>

>
1x
go to beginning previous frame pause play next frame go to end

一个连通无向有权图 G生成树 Spanning Tree (ST)G 的子图,同时也是一个连接 G 中所有节点的。 一个图 G 可以有很多的生成树 (详见 this 或者 this),而每一个都有不同的总权重(生成树中所有边的权重之和)。

G 的最小生成树 Min(imum) Spanning Tree (MST) 是在所有生成树中,有着最小总权重的生成树。


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

最小生成树 (及其优化) 的问题如下定义: 给定一个连通的无向有权图 G = (V, E), 选择 G 中所有边的一个子集,使得图仍然是连通的,但其边的总权重最小。输出要么是 G 的一个最小生成树 (G 可以有很多最小生成树) 或是其最小的权重和。


Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

政府想要用 N-1 条路将 N 个村庄连接起来(这是一个N个节点,N-1条边的生成树)。

路的造价取决于地形,距离等等(这是一个完全的无向有权图,其中有 N*(N-1)/2 个有权重的边)。
你想要最小化造价。你要怎样建这些路呢?(这是一个最小生成树)。

备注:对这个问题有一个更高级的变种解法,详见 这里


Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

最小生成树算法有很多种解法。

在此可视化中,我们会学习其中的两种:Kruskal算法和Prim算法。两种都是贪心算法。注意除此两种外,还有其他一些此处未列的解法。


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

观看上面最小生成树算法的可视化。

最开始,图中所有的节点和边都被标记成 白底黑字.

在算法的最后, |V|-1 条最小生成树的边 (和所有 |V| 个节点) 都被标记成 橙色 而所有不在最小生成树中的边则为 灰色.

🕑

There are two different sources for specifying an input graph:

  1. Edit Graph: You can edit the currently displayed connected undirected weighted graph or draw your own input graph.
  2. Example Graphs: You can select from the list of example connected undirected weighted graphs to get you started.
🕑

Kruskal 算法: 一个 O(E log V) 的贪心最小生成树算法。它扩展一个最小生成树的森林,直到将他们组合成一个最小生成树。

Kruskal 算法 需要 一个好的排序算法来对图中的边以权重的非减进行排序 (通常存储在 边列表 内) 和 并查集 (UFDS)来判断/预防成环。

🕑
Kruskal算法先将边以权重非减,较小节点,较大节点的次序排序。
讨论:这是唯一可行的排序次序吗?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
然后,Kruskal 算法会遍历这些排好序的边,并贪心的选择下一个不产生环的边。
无需多言,让我们在有三条相同权重边默认示例图上来试试 Kruskal。在继续之前请看完此动画。
🕑

要了解 Kruskal 算法的贪心策略有效,我们定义一个循环不变量:每条被 Kruskal 算法加进树 T 的边 e 都是最小生成树 MST 的一部分。

在 Kruskal 算法主循环的开始,根据定义 T = {} 总是最小生成树的一部分。

Kruskal 算法在主循环中有一个特殊的环检查 (使用 UFDS 数据结构),且只在(相较于之前选中的边)不成环的的情况下将边 e 加入 T。

在主循环结束时,Kruskal 算法只会从连通的无向有权图 G 中选中不成环的 V-1 条边。这表明 Kruskal 算法产生了一个生成树。

在默认示例中个,注意在拿走最初的两条边 0-1 和 0-3之后,Kruskal 算法不能拿走 1-3,因为这会导致环 0-1-3-0。接下来Kruskal 算法会拿走边 0-2 但不会拿走 0-2,因为这会导致环 0-2-3-0。

🕑
我们已经在前面看到 Kruskal 算法在停止时会产生一个生成树 T。但其是否是最小生成树呢?
要证明,我们要注意在 Kruskal 算法的主循环开始前,我们已经将所有边以权重的非减次序排好了序,即后面的边总会有一样或更高的权重。
🕑

在每次循环开始时, T 总是最小生成树的一部分。

如果 Kruskal 算法只添加一条最小权重的边 e (保证其与之前的边不会形成一个环),那么我们可以保证 w(T U e) ≤ w(T U 任何其他不成环的未处理的边) (由于 Kruskal 算法将边排序了 w(e) ≤ w(e')).

因此,在循环结束是,生成树 T 一定会有最小的总权重 w(T), 而 T 就是最终的最小生成树。

在默认的示例中,注意在依次拿走两条边 0-1 和 0-3 且因 1-3 会成环而排除 1-3 之后,我们可以安全的拿走吓一跳最小权重边 0-2 (权重 2),因为拿走任意其他的边(如权重3的边 2-3)会要么生成 另一个 权重相同的最小生成树 (非本示例) 或 另一个 不是最小的生成树 (本示例)。

🕑

Kruskal 算法有两个部分:排序和 Kruskal 算法的主循环。

对边的排序很简单。我们只需用一个 边列表 来排序 E 个边,用 O(E log E) = O(E log V) 的排序算法(或者用C++/Python/Java 的 sorting library)来以权重的非减,较小的节点数,较大的节点数的次序排序。这个 O(E log V) 的复杂度是 Kruskal 算法的瓶颈,因为第二部分其实较快,如下所示。

Kruskal 算法的主循环可以用 并查集 来简单的实现。我们用 IsSameSet(u, v) 来测试以节点 uv 为端点的边 e 是否会导致环(相同的连接分支 -- 有另一条从 uv 的路,所以添加边 (u, v) 会导致成环)。如果 IsSameSet(u, v) 为 false,我们贪心的选择下一个最小的合格边 e 并调用 UnionSet(u, v) 来预防可能的与此边相关的环。这个部分在 O(E) 时间内运行,因为我们认为 UFDS 的 IsSameSet(u, v)UnionSet(u, v) 操作在较小图上以 O(1) 时间运行。

🕑

Prim 算法: 另一个 O(E log V) 的贪心最小生成树算法。它从一个起始的源节点开始逐渐扩张到整个图,从而生成一个最小生成树。

Prim 算法需要使用优先队列 (一般用 Binary Heap 来实现但我们也可以用平衡二叉树 Balanced Binary Search Tree) 以权重的非减次序来动态排序当前的边, 一个 邻接表 来找到一个节点的邻居节点, 和一个布尔数组 (直接寻址表) 来帮助判断环。

Prim 算法的另一个名字是 Jarnik-Prim 算法。

🕑

Prim 算法从一个特定的源节点 s 开始(通常是节点0),将所有与 s 相连的边根据其权重从小到大排入一个优先队列;如果权重相同,则根据节点的序号。然后它会重复下述的贪心步骤:如果在优先队列中最前面的边 e: (w, v) 中的 v 还没有被访问过,这意味着我们可以贪心地包括 v 来扩展生成树 T 并将 v 的边排进优先队列中;否则我们放弃边 e (因为Prim算法从节点 s 生成树,v 已被访问过意味着有另外一条从 sv 的路,而添加边 e 会导致环)。

毋再多言,让我们来在默认示例图上试试 Prim(1) (有三条相同权重的边)。我们用 Prim 算法从源节点 s = 1 开始。请在继续之前看完此动画示例。

🕑

Prim 算法是一个 Greedy Algorithm 因为在其循环的每一步,它总是选择下一个权重最小的边 e(这是贪心的!)。

要证明 Prim 算法是正确的,让我们看看下面的简单证明:令 T 为图 G 上用 Prim 算法生成的生成树,而 T* G 上的最小生成树 MST。

T == T*,即 Prim 算法生成和 T* 完全一样的最小生成树,我们就成功了。

但是如果 T != T*...

🕑

假设在默认实例中,T = {0-1, 0-3, 0-2}T* = {0-1, 1-3, 0-2}。


ek = (u, v) 为 Prim 算法第 k 轮中第一条选中的不在 T* 中的边 (在示例中 k = 2, e2 = (0, 3), 注意 (0, 3) 不在 T* 中) 。

PT* u v 的路, 再令 e*P 中的一条边,使得一个端点在 Prim 算法 N-1 轮生成的数中而另一个不在 (在示例中, P = 0-1-3e* = (1, 3), 注意节点 1k = 1 轮时就在 T 中).

🕑

如果 e* 的权重比 ek 的权重小,那么 Prim 算法在第 k 轮会选择 e*

所以,可以确定的是 w(e*) ≥ w(ek)。(在示例图中, e* = (1, 3) 有权重 1 而 ek = (0, 3) 也有权重 1).

w(e*) = w(ek), 我们可以任意从 e*ek 中选择一个。当 w(e*) ≥ w(ek), e* 总能在保持最小权重和 T* 的情况下被 ek 替换。(在示例图中, 当我们将 e* = (1, 3) 替换成 ek = (0, 3), 我们将 T* 转换成了 T).

🕑

但是如果 T != T*... (continued)

我们可以重复上述的替换步骤直到 T* = T,然后就可以证明Prim算法生成的生成树是(从源节点 s 开始的)最小生成树,因为不论最佳的最小生成树是什么,它都可以转换成Prim算法输出的最小生成树。

🕑

我们可以用两个著名的数据结构来实现 Prim 算法:

  1. 一个优先队列 (二叉堆 C++ STL priority_queue/Python heapq/Java PriorityQueue 或者 平衡二叉树 C++ STL set/Java TreeSet),和
  2. 一个大小为 V 的布尔数组,本质是一个 直接寻址表 (来判断一个节点有没有被访问过,也就是是否与源节点 s 在一个连通分支内)

有了这些,我们可以在 O(E log V) 时间内运行 Prim 算法,因为我们一次处理一条边,而在优先队列中 Insert((w, v))(w, v) = ExtractMax() 时间为 O(log E) = O(log V2) = O(2 log V) = O(log V)。因为总共有 E 条边,Prim 算法时间复杂度为 O(E log V)。

🕑

Quiz: Having seen both Kruskal's and Prim's Algorithms, which one is the better MST algorithm?

Kruskal's Algorithm
It Depends
Prim's Algorithm

讨论:为什么?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
你已经几乎完成了最小生成树的基础知识和它的两个经典算法:Kruskal 算法和 Prim 算法(有其他的算法,类似 O(E log V) 的 Boruvka 算法,但并未在此可视化中展示)。我们鼓励你在探索模式中探索更多。

但是,更难的最小生成树问题可能会比基础版本的要更具挑战性。

一旦你已经掌握了这个最小生成树问题,我们鼓励你学习更多更难的图问题,其中最小生成树只是一部分,例如 NP 困难的 (Metric No-Repeat) TSP 和 Steiner Tree 问题。

🕑

我们将最小生成树问题的一些变种放在 Competitive Programming book 一书中。

  1. 最大生成树,
  2. 最小生成子图,
  3. 最小生成森林,
  4. 第二好的生成树,
  5. 最短/最长路径问题,等等

广告:购买CP一书来学习这些变种,并且了解在不同的情况下Kruskal算法更好,而在另一些情况下Prim算法更好

🕑

若想要最小生成树问题或Kruskal/Prim算法中更有挑战性的问题,可以在 MST 的训练模块练习(不需登录,但只有中等难度的练习)。

对NUS学生来说,你可以登录并正式完成此模块,而成就会保存在你的账户中。

🕑

这个最小生成树算法会比基本形式的要有挑战性的多。因此,我们建议您尝试下面两道 ACM ICPC 有关最小生成树的竞赛题: UVa 01234 - RACINGKattis - arcticnetwork

尝试他们来证实和提升你对这个问题的理解。

你可以使用我们对Kruskal/Prim算法的实现代码:kruskal.cpp | py | java | ml prim.cpp | py | java | ml

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Edit Graph

图示

Kruskal 算法

Prim 算法(s)

>

CP 4.10

CP 4.14

K5

Rail

Tesselation

s =

执行

We use cookies to improve our website.
By clicking ACCEPT, you agree to our use of Google Analytics for analysing user behaviour and improving user experience as described in our Privacy Policy.
By clicking reject, only cookies necessary for site functions will be used.

ACCEPT REJECT
关于 团队 使用条款 隐私政策

关于

VisuAlgo于2011年由Steven Halim博士创建,是一个允许学生以自己的速度自学基础知识,从而更好地学习数据结构与算法的工具。
VisuAlgo包含许多高级算法,这些算法在Steven Halim博士的书(“Competitive Programming”,与他的兄弟Felix Halim博士合作)和其他书中有讨论。今天,一些高级算法的可视化/动画只能在VisuAlgo中找到。
虽然本网站是专门为新加坡国立大学(NUS)学生学习各种数据结构和算法类(例如CS1010,CS2040,CS3230,CS3233,CS4234)而设,但我们作为在线学习的倡导者,我们非常希望世界各地的好奇的头脑能发现这些非常有用的算法可视化。
VisuAlgo不是从一开始就设计为在小触摸屏(例如智能手机)上工作良好,因为为了满足许多复杂算法可视化,需要大量的像素和点击并拖动手势进行交互。为得到良好的用户体验,最低屏幕分辨率应为1024x768,并且本网站只有首页相对适合移动设备。但是,我们正在测试一个准备在2022年4月发布的移动版本。
VisuAlgo是一个正在进行的项目,更复杂的可视化仍在开发中。
最令人兴奋的发展是自动问题生成器和验证器(在线测验系统),允许学生测试他们的基本数据结构和算法的知识。这些问题是通过一些随机生成的规则,学生的答案会在提交给我们的评分服务器后立即自动分级。这个在线测验系统,当它被更多的世界各地的CS教师采用,应该能从技术上消除许多大学的典型计算机科学考试手动基本数据结构和算法问题。通过在通过在线测验时设置小(但非零)的重量,CS教练可以(显着地)增加他/她的学生掌握这些基本问题,因为学生具有几乎无限数量的可以立即被验证的训练问题他们参加在线测验。培训模式目前包含12个可视化模块的问题。我们将很快添加剩余的12个可视化模块,以便VisuAlgo中的每个可视化模块都有在线测验组件。
VisuAlgo支持三种语言:英语,中文,印尼语。目前,我们还以各种语言写了有关VisuAlgo的公共注释:
id, kr, vn, th.

团队

项目领导和顾问(2011年7月至今)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

本科生研究人员 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

最后一年项目/ UROP学生 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

最后一年项目/ UROP学生 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

本科生研究人员 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

最后一年项目/ UROP学生 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

最后一年项目/ UROP学生 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

最后一年项目/ UROP学生 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

最后一年项目/ UROP学生 6 (Aug 2022-Apr 2023)
Lim Dewen Aloysius, Ting Xiao

List of translators who have contributed ≥100 translations can be found at statistics page.

致谢
本项目运营资金是由NUS教学与学习发展中心(CDTL)的教学增进款慷慨提供的。

使用条款

VisuAlgo is free of charge for Computer Science community on earth. If you like VisuAlgo, the only "payment" that we ask of you is for you to tell the existence of VisuAlgo to other Computer Science students/instructors that you know =) via Facebook/Twitter/Instagram/TikTok posts, course webpages, blog reviews, emails, etc.

If you are a data structure and algorithm student/instructor, you are allowed to use this website directly for your classes. If you take screen shots (videos) from this website, you can use the screen shots (videos) elsewhere as long as you cite the URL of this website (https://visualgo.net) and/or list of publications below as reference. However, you are NOT allowed to download VisuAlgo (client-side) files and host it on your own website as it is plagiarism. As of now, we do NOT allow other people to fork this project and create variants of VisuAlgo. Using the offline copy of (client-side) VisuAlgo for your personal usage is fine.

Note that VisuAlgo's online quiz component is by nature has heavy server-side component and there is no easy way to save the server-side scripts and databases locally. Currently, the general public can only use the 'training mode' to access these online quiz system. Currently the 'test mode' is a more controlled environment for using these randomly generated questions and automatic verification for real examinations in NUS.

List of Publications

This work has been presented briefly at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

This work is done mostly by my past students. 

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

隐私政策

Version 1.1 (Updated Fri, 14 Jan 2022).

Disclosure to all visitors: We currently use Google Analytics to get an overview understanding of our site visitors. We now give option for user to Accept or Reject this tracker.

Since Wed, 22 Dec 2021, only National University of Singapore (NUS) staffs/students and approved CS lecturers outside of NUS who have written a request to Steven can login to VisuAlgo, anyone else in the world will have to use VisuAlgo as an anonymous user that is not really trackable other than what are tracked by Google Analytics.

For NUS students enrolled in modules that uses VisuAlgo: By using a VisuAlgo account (a tuple of NUS official email address, NUS official student name as in the class roster, and a password that is encrypted on the server side — no other personal data is stored), you are giving a consent for your module lecturer to keep track of your e-lecture slides reading and online quiz training progresses that is needed to run the module smoothly. Your VisuAlgo account will also be needed for taking NUS official VisuAlgo Online Quizzes and thus passing your account credentials to another person to do the Online Quiz on your behalf constitutes an academic offense. Your user account will be purged after the conclusion of the module unless you choose to keep your account (OPT-IN). Access to the full VisuAlgo database (with encrypted passwords) is limited to Steven himself.

For other NUS students, you can self-register a VisuAlgo account by yourself (OPT-IN).

For other CS lecturers worldwide who have written to Steven, a VisuAlgo account (your (non-NUS) email address, you can use any display name, and encrypted password) is needed to distinguish your online credential versus the rest of the world. Your account will be tracked similarly as a normal NUS student account above but it will have CS lecturer specific features, namely the ability to see the hidden slides that contain (interesting) answers to the questions presented in the preceding slides before the hidden slides. You can also access Hard setting of the VisuAlgo Online Quizzes. You can freely use the material to enhance your data structures and algorithm classes. Note that there can be other CS lecturer specific features in the future.

For anyone with VisuAlgo account, you can remove your own account by yourself should you wish to no longer be associated with VisuAlgo tool.