>

>
1x
go to beginning previous frame pause play next frame go to end

一个连通无向有权图 G生成树 Spanning Tree (ST)G 的子图,同时也是一个连接 G 中所有节点的。 一个图 G 可以有很多的生成树 (详见 this 或者 this),而每一个都有不同的总权重(生成树中所有边的权重之和)。

G 的最小生成树 Min(imum) Spanning Tree (MST) 是在所有生成树中,有着最小总权重的生成树。


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

最小生成树 (及其优化) 的问题如下定义: 给定一个连通的无向有权图 G = (V, E), 选择 G 中所有边的一个子集,使得图仍然是连通的,但其边的总权重最小。输出要么是 G 的一个最小生成树 (G 可以有很多最小生成树) 或是其最小的权重和。


Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

政府想要用 N-1 条路将 N 个村庄连接起来(这是一个N个节点,N-1条边的生成树)。

路的造价取决于地形,距离等等(这是一个完全的无向有权图,其中有 N*(N-1)/2 个有权重的边)。
你想要最小化造价。你要怎样建这些路呢?(这是一个最小生成树)。

备注:对这个问题有一个更高级的变种解法,详见 这里


Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

最小生成树算法有很多种解法。

在此可视化中,我们会学习其中的两种:Kruskal算法和Prim算法。两种都是贪心算法。注意除此两种外,还有其他一些此处未列的解法。


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

观看上面最小生成树算法的可视化。

最开始,图中所有的节点和边都被标记成 白底黑字.

在算法的最后, |V|-1 条最小生成树的边 (和所有 |V| 个节点) 都被标记成 橙色 而所有不在最小生成树中的边则为 灰色.

🕑

有两种不同的方式来指定输入图:

  1. 编辑图:您可以编辑当前显示的连通无向加权图,或者绘制您自己的输入图。
  2. 示例图:您可以从连通无向加权图的示例列表中选择,以便开始。
🕑

Kruskal 算法: 一个 O(E log V) 的贪心最小生成树算法。它扩展一个最小生成树的森林,直到将他们组合成一个最小生成树。

Kruskal 算法 需要 一个好的排序算法来对图中的边以权重的非减进行排序 (通常存储在 边列表 内) 和 并查集 (UFDS)来判断/预防成环。

🕑
Kruskal算法先将边以权重非减,较小节点,较大节点的次序排序。
讨论:这是唯一可行的排序次序吗?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
然后,Kruskal 算法会遍历这些排好序的边,并贪心的选择下一个不产生环的边。
无需多言,让我们在有三条相同权重边默认示例图上来试试 Kruskal。在继续之前请看完此动画。
🕑

要了解 Kruskal 算法的贪心策略有效,我们定义一个循环不变量:每条被 Kruskal 算法加进树 T 的边 e 都是最小生成树 MST 的一部分。

在 Kruskal 算法主循环的开始,根据定义 T = {} 总是最小生成树的一部分。

Kruskal 算法在主循环中有一个特殊的环检查 (使用 UFDS 数据结构),且只在(相较于之前选中的边)不成环的的情况下将边 e 加入 T。

在主循环结束时,Kruskal 算法只会从连通的无向有权图 G 中选中不成环的 V-1 条边。这表明 Kruskal 算法产生了一个生成树。

在默认示例中个,注意在拿走最初的两条边 0-1 和 0-3之后,Kruskal 算法不能拿走 1-3,因为这会导致环 0-1-3-0。接下来Kruskal 算法会拿走边 0-2 但不会拿走 0-2,因为这会导致环 0-2-3-0。

🕑
我们已经在前面看到 Kruskal 算法在停止时会产生一个生成树 T。但其是否是最小生成树呢?
要证明,我们要注意在 Kruskal 算法的主循环开始前,我们已经将所有边以权重的非减次序排好了序,即后面的边总会有一样或更高的权重。
🕑

在每次循环开始时, T 总是最小生成树的一部分。

如果 Kruskal 算法只添加一条最小权重的边 e (保证其与之前的边不会形成一个环),那么我们可以保证 w(T U e) ≤ w(T U 任何其他不成环的未处理的边) (由于 Kruskal 算法将边排序了 w(e) ≤ w(e')).

因此,在循环结束是,生成树 T 一定会有最小的总权重 w(T), 而 T 就是最终的最小生成树。

在默认的示例中,注意在依次拿走两条边 0-1 和 0-3 且因 1-3 会成环而排除 1-3 之后,我们可以安全的拿走吓一跳最小权重边 0-2 (权重 2),因为拿走任意其他的边(如权重3的边 2-3)会要么生成 另一个 权重相同的最小生成树 (非本示例) 或 另一个 不是最小的生成树 (本示例)。

🕑

Kruskal 算法有两个部分:排序和 Kruskal 算法的主循环。

对边的排序很简单。我们只需用一个 边列表 来排序 E 个边,用 O(E log E) = O(E log V) 的排序算法(或者用C++/Python/Java 的 sorting library)来以权重的非减,较小的节点数,较大的节点数的次序排序。这个 O(E log V) 的复杂度是 Kruskal 算法的瓶颈,因为第二部分其实较快,如下所示。

Kruskal 算法的主循环可以用 并查集 来简单的实现。我们用 IsSameSet(u, v) 来测试以节点 uv 为端点的边 e 是否会导致环(相同的连接分支 -- 有另一条从 uv 的路,所以添加边 (u, v) 会导致成环)。如果 IsSameSet(u, v) 为 false,我们贪心的选择下一个最小的合格边 e 并调用 UnionSet(u, v) 来预防可能的与此边相关的环。这个部分在 O(E) 时间内运行,因为我们认为 UFDS 的 IsSameSet(u, v)UnionSet(u, v) 操作在较小图上以 O(1) 时间运行。

🕑

Prim 算法: 另一个 O(E log V) 的贪心最小生成树算法。它从一个起始的源节点开始逐渐扩张到整个图,从而生成一个最小生成树。

Prim 算法需要使用优先队列 (一般用 Binary Heap 来实现但我们也可以用平衡二叉树 Balanced Binary Search Tree) 以权重的非减次序来动态排序当前的边, 一个 邻接表 来找到一个节点的邻居节点, 和一个布尔数组 (直接寻址表) 来帮助判断环。

Prim 算法的另一个名字是 Jarnik-Prim 算法。

🕑

Prim 算法从一个特定的源节点 s 开始(通常是节点0),将所有与 s 相连的边根据其权重从小到大排入一个优先队列;如果权重相同,则根据节点的序号。然后它会重复下述的贪心步骤:如果在优先队列中最前面的边 e: (w, v) 中的 v 还没有被访问过,这意味着我们可以贪心地包括 v 来扩展生成树 T 并将 v 的边排进优先队列中;否则我们放弃边 e (因为Prim算法从节点 s 生成树,v 已被访问过意味着有另外一条从 sv 的路,而添加边 e 会导致环)。

毋再多言,让我们来在默认示例图上试试 Prim(1) (有三条相同权重的边)。我们用 Prim 算法从源节点 s = 1 开始。请在继续之前看完此动画示例。

🕑

Prim 算法是一个 Greedy Algorithm 因为在其循环的每一步,它总是选择下一个权重最小的边 e(这是贪心的!)。

要证明 Prim 算法是正确的,让我们看看下面的简单证明:令 T 为图 G 上用 Prim 算法生成的生成树,而 T* G 上的最小生成树 MST。

T == T*,即 Prim 算法生成和 T* 完全一样的最小生成树,我们就成功了。

但是如果 T != T*...

🕑

假设在默认实例中,T = {0-1, 0-3, 0-2}T* = {0-1, 1-3, 0-2}。


ek = (u, v) 为 Prim 算法第 k 轮中第一条选中的不在 T* 中的边 (在示例中 k = 2, e2 = (0, 3), 注意 (0, 3) 不在 T* 中) 。

PT* u v 的路, 再令 e*P 中的一条边,使得一个端点在 Prim 算法 N-1 轮生成的数中而另一个不在 (在示例中, P = 0-1-3e* = (1, 3), 注意节点 1k = 1 轮时就在 T 中).

🕑

如果 e* 的权重比 ek 的权重小,那么 Prim 算法在第 k 轮会选择 e*

所以,可以确定的是 w(e*) ≥ w(ek)。(在示例图中, e* = (1, 3) 有权重 1 而 ek = (0, 3) 也有权重 1).

w(e*) = w(ek), 我们可以任意从 e*ek 中选择一个。当 w(e*) ≥ w(ek), e* 总能在保持最小权重和 T* 的情况下被 ek 替换。(在示例图中, 当我们将 e* = (1, 3) 替换成 ek = (0, 3), 我们将 T* 转换成了 T).

🕑

但是如果 T != T*... (continued)

我们可以重复上述的替换步骤直到 T* = T,然后就可以证明Prim算法生成的生成树是(从源节点 s 开始的)最小生成树,因为不论最佳的最小生成树是什么,它都可以转换成Prim算法输出的最小生成树。

🕑

我们可以用两个著名的数据结构来实现 Prim 算法:

  1. 一个优先队列 (二叉堆 C++ STL priority_queue/Python heapq/Java PriorityQueue 或者 平衡二叉树 C++ STL set/Java TreeSet),和
  2. 一个大小为 V 的布尔数组,本质是一个 直接寻址表 (来判断一个节点有没有被访问过,也就是是否与源节点 s 在一个连通分支内)

有了这些,我们可以在 O(E log V) 时间内运行 Prim 算法,因为我们一次处理一条边,而在优先队列中 Insert((w, v))(w, v) = ExtractMax() 时间为 O(log E) = O(log V2) = O(2 log V) = O(log V)。因为总共有 E 条边,Prim 算法时间复杂度为 O(E log V)。

🕑

Quiz: Having seen both Kruskal's and Prim's Algorithms, which one is the better MST algorithm?

It Depends
Prim's Algorithm
Kruskal's Algorithm

讨论:为什么?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
你已经几乎完成了最小生成树的基础知识和它的两个经典算法:Kruskal 算法和 Prim 算法(有其他的算法,类似 O(E log V) 的 Boruvka 算法,但并未在此可视化中展示)。我们鼓励你在探索模式中探索更多。

但是,更难的最小生成树问题可能会比基础版本的要更具挑战性。

一旦你已经掌握了这个最小生成树问题,我们鼓励你学习更多更难的图问题,其中最小生成树只是一部分,例如 NP 困难的 (Metric No-Repeat) TSP 和 Steiner Tree 问题。

🕑

我们将最小生成树问题的一些变种放在 Competitive Programming book 一书中。

  1. 最大生成树,
  2. 最小生成子图,
  3. 最小生成森林,
  4. 第二好的生成树,
  5. 最短/最长路径问题,等等

广告:购买CP一书来学习这些变种,并且了解在不同的情况下Kruskal算法更好,而在另一些情况下Prim算法更好

🕑

若想要最小生成树问题或Kruskal/Prim算法中更有挑战性的问题,可以在 MST 的训练模块练习(不需登录,但只有中等难度的练习)。

对NUS学生来说,你可以登录并正式完成此模块,而成就会保存在你的账户中。

🕑

这个最小生成树算法会比基本形式的要有挑战性的多。因此,我们建议您尝试下面两道 ACM ICPC 有关最小生成树的竞赛题: UVa 01234 - RACINGKattis - arcticnetwork

尝试他们来证实和提升你对这个问题的理解。

你可以使用我们对Kruskal/Prim算法的实现代码:kruskal.cpp | py | java | ml prim.cpp | py | java | ml

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Visualisation Scale

Toggle V. Number for 0.5x

编辑图表

Input Graph

图示

Kruskal 算法

Prim 算法(s)

>

1.0x (Default)

0.5x (Minimal Details)

CP 4.10

CP 4.14

K5

Rail

Tessellation

Large

s =

前进

关于 团队 使用条款
隐私政策

关于

VisuAlgo最初由副教授Steven Halim于2011年构思,旨在通过提供自学、互动式学习平台,帮助学生更深入地理解数据结构和算法。

VisuAlgo涵盖了Steven Halim博士与Felix Halim博士、Suhendry Effendy博士合著的书《竞技编程》中讨论的许多高级算法。即使过去十年,VisuAlgo仍然是可视化和动画化这些复杂算法的独家平台。

虽然VisuAlgo主要面向新加坡国立大学(NUS)的学生,包括各种数据结构和算法课程(例如CS1010/等价课程,CS2040/等价课程(包括IT5003),CS3230,CS3233和CS4234),但它也是全球好奇心的宝贵资源,促进在线学习。

最初,VisuAlgo并不适用于智能手机等小触摸屏,因为复杂的算法可视化需要大量的像素空间和点击拖动交互。为了获得最佳用户体验,建议使用最低分辨率为1366x768的屏幕。然而,自2022年4月以来,VisuAlgo的移动(精简)版本已经推出,使得在智能手机屏幕上使用VisuAlgo的部分功能成为可能。

VisuAlgo仍然在不断发展中,正在开发更复杂的可视化。目前,该平台拥有24个可视化模块。

VisuAlgo配备了内置的问题生成器和答案验证器,其“在线测验系统”使学生能够测试他们对基本数据结构和算法的理解。问题根据特定规则随机生成,并且学生提交答案后会自动得到评分。随着越来越多的计算机科学教师在全球范围内采用这种在线测验系统,它可以有效地消除许多大学标准计算机科学考试中手工基本数据结构和算法问题。通过给通过在线测验的学生分配一个小但非零的权重,计算机科学教师可以显著提高学生对这些基本概念的掌握程度,因为他们可以在参加在线测验之前立即验证几乎无限数量的练习题。每个VisuAlgo可视化模块现在都包含自己的在线测验组件。

VisuAlgo已经被翻译成三种主要语言:英语、中文和印尼语。此外,我们还用各种语言撰写了关于VisuAlgo的公开笔记,包括印尼语、韩语、越南语和泰语:

id, kr, vn, th.

团队

项目领导和顾问(2011年7月至今)
Associate Professor Steven Halim, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

本科生研究人员 1
CDTL TEG 1: Jul 2011-Apr 2012: Koh Zi Chun, Victor Loh Bo Huai

最后一年项目/ UROP学生 1
Jul 2012-Dec 2013: Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy
Jun 2013-Apr 2014 Rose Marie Tan Zhao Yun, Ivan Reinaldo

本科生研究人员 2
CDTL TEG 2: May 2014-Jul 2014: Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

最后一年项目/ UROP学生 2
Jun 2014-Apr 2015: Erin Teo Yi Ling, Wang Zi
Jun 2016-Dec 2017: Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir
Aug 2021-Apr 2023: Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long, Ting Xiao, Lim Dewen Aloysius

本科生研究人员 3
Optiver: Aug 2023-Oct 2023: Bui Hong Duc, Oleh Naver, Tay Ngan Lin

最后一年项目/ UROP学生 3
Aug 2023-Apr 2024: Xiong Jingya, Radian Krisno, Ng Wee Han, Tan Chee Heng
Aug 2024-Apr 2025: Edbert Geraldy Cangdinata, Huang Xing Chen, Nicholas Patrick

List of translators who have contributed ≥ 100 translations can be found at statistics page.

致谢
NUS教学与学习发展中心(CDTL)授予拨款以启动这个项目。在2023/24学年,Optiver的慷慨捐赠将被用来进一步开发 VisuAlgo。

使用条款

VisuAlgo慷慨地向全球计算机科学界提供免费服务。如果您喜欢VisuAlgo,我们恳请您向其他计算机科学学生和教师宣传它的存在。您可以通过社交媒体平台(如Facebook、YouTube、Instagram、TikTok、Twitter等)、课程网页、博客评论、电子邮件等方式分享VisuAlgo。

数据结构与算法(DSA)的学生和教师可以直接在课堂上使用本网站。如果您从本网站截取屏幕截图或视频,可以在其他地方使用,但请引用本网站的URL(https://visualgo.net)和/或下面的出版物列表作为参考。但请不要下载VisuAlgo的客户端文件并将其托管在您的网站上,因为这构成了抄袭行为。目前,我们不允许他人分叉此项目或创建VisuAlgo的变体。个人使用离线副本的客户端VisuAlgo是可以接受的。

请注意,VisuAlgo的在线测验组件具有重要的服务器端元素,保存服务器端脚本和数据库并不容易。目前,普通公众只能通过“培训模式”访问在线测验系统。“测试模式”提供了一个更受控制的环境,用于在新加坡国立大学的真实考试中使用随机生成的问题和自动验证。


出版物列表

这项工作曾在2012年国际大学生程序设计竞赛(波兰,华沙)的CLI研讨会上和2012年国际信息学奥林匹克竞赛(意大利,锡尔米奥内-蒙蒂基亚里)的IOI会议上展示过。您可以点击此链接阅读我们2012年关于该系统的论文(当时还没有称为VisuAlgo),以及此链接阅读2015年的简短更新(将VisuAlgo与之前的项目关联起来)。


错误报告或新功能请求

VisuAlgo并不是一个完成的项目。Steven Halim副教授仍在积极改进VisuAlgo。如果您在使用VisuAlgo时发现任何可视化页面/在线测验工具中的错误,或者您想要请求新功能,请联系Steven Halim副教授。他的联系方式是将他的名字连接起来,然后加上gmail dot com。

隐私政策

版本 1.2 (更新于2023年8月18日星期五)。

自2023年8月18日(星期五)起,我们不再使用 Google Analytics。因此,我们现在使用的所有 cookies 仅用于此网站的运营。即使是首次访问的用户,烦人的 cookie 同意弹窗现在也已关闭。

自2023年6月7日(星期五)起,由于 Optiver 的慷慨捐赠,全世界的任何人都可以自行创建一个 VisuAlgo 账户,以存储一些自定义设置(例如,布局模式,默认语言,播放速度等)。

此外,对于 NUS 学生,通过使用 VisuAlgo 账户(一个 NUS 官方电子邮件地址,课堂名册中的学生姓名,以及在服务器端加密的密码 - 不存储其他个人数据),您同意您的课程讲师跟踪您的电子讲义阅读和在线测验培训进度,这是顺利进行课程所必需的。您的 VisuAlgo 账户也将用于参加 NUS 官方的 VisuAlgo 在线测验,因此,将您的账户凭据传递给他人代您进行在线测验构成学术违规。课程结束后,您的用户账户将被清除,除非您选择保留您的账户(OPT-IN)。访问完整的 VisuAlgo 数据库(包含加密密码)的权限仅限于 Halim 教授本人。

对于全球其他已经给 Steven 写过信的 CS 讲师,需要一个 VisuAlgo 账户(您的(非 NUS)电子邮件地址,您可以使用任何显示名称,以及加密密码)来区分您的在线凭据与世界其他地方。您的账户将具有 CS 讲师特定的功能,即能够查看隐藏的幻灯片,这些幻灯片包含了在隐藏幻灯片之前的幻灯片中提出的问题的(有趣的)答案。您还可以访问 VisuAlgo 在线测验的 Hard 设置。您可以自由地使用这些材料来增强您的数据结构和算法课程。请注意,未来可能会有其他 CS 讲师特定的功能。

对于任何拥有 VisuAlgo 账户的人,如果您希望不再与 VisuAlgo 工具有关联,您可以自行删除您的账户。