7    VisuAlgo.net / /ufds Login Himpunan Lepas (UFDS)
Mode Eksplorasi ▿

>

>
pelan
cepat
go to beginning previous frame pause play next frame go to end

The Union-Find Disjoint Sets (UFDS) data structure is used to model a collection of disjoint sets, which is able to efficiently (i.e. in nearly constant time) determine which set an item belongs to, test if two items belong to the same set, and union two disjoint sets into one when needed. It can be used to find connected components in an undirected graph, and can hence be used as part of Kruskal's algorithm for the Minimum Spanning Tree (MST) problem.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
Please login if you are a repeated visitor or register for an (optional) free account first.

X Esc
Berikut PgDn

View the visualization of a sample Union-Find Disjoint Sets here!


Each tree represents a disjoint set (thus a collection of disjoint sets form a forest of trees) and the root of the tree is the representative item of this disjoint set.


Now stop and look at the currently visualized trees. How many items (N) are there overall? How many disjoint sets are there? What are the members of each disjoint set? What is the representative item of each disjoint set?


Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Sebelum PgUp
Berikut PgDn

As we fixed the default example for this e-Lecture, your answers should be: N=13 and there are 4 disjoint sets: {0,1,2,3,4,10}, {5,7,8,11}, {6,9}, {12} with the underlined members be the representative items (of their own disjoint set).


Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Sebelum PgUp
Berikut PgDn

We can simply record this forest of trees with an array p of size N items where p[i] records the parent of item i and if p[i] = i, then i is the root of this tree and also the representative item of the set that contains item i.


Once again, look at the visualization above and determine the values inside this array p.

X Esc
Sebelum PgUp
Berikut PgDn

On the same fixed example, your answers should be p = [1, 3, 3, 3, 3, 5, 6, 5, 5, 6, 4, 8,12] of size N = 13 ranging from p[0] to p[12].


You can check that p[3] = 3, p[5] = 5, p[6] = 6, and p[12] = 12, which are consistent with the fact that {3,5,6,12} are the representative items (of their own disjoint set).

X Esc
Sebelum PgUp
Berikut PgDn

We also record one more information in array rank also of size N. The value of rank[i] is the upperbound of the height of subtree rooted at vertex i that will be used as guiding heuristic for UnionSet(i, j) operation. You will notice that after 'path-compression' heuristic (to be described later) compresses some path, the rank values no longer reflect the true height of that subtree.


As there are many items with rank 0, we set the visualization as follows to minimize clutter: Only when the rank of a vertex i is greater than 0, then VisuAlgo will show the value of rank[i] (abbreviated as a single character r) as a red text below vertex i.

X Esc
Sebelum PgUp
Berikut PgDn

On the same fixed example, verify that {1,4,6,8} have rank 1 and {3,5} have rank 2, with the rest having rank 0 (not shown).


At this point of time, all rank values are correct, i.e. they really describe the height of the subtree rooted at that vertex. We will soon see that they will not be always correct in the next few slides.

X Esc
Sebelum PgUp
Berikut PgDn

There are five available UFDS operations in this visualization page:
Examples, Initialize(N), FindSet(i), IsSameSet(i, j), and UnionSet(i, j).


The first operation (Examples) is trivial: List of example UFDS structures with various special characteristics for your starting point. This e-Lecture mode always use the 'Four disjoint sets' example as the starting point.


Also notice that none of the example contains a 'very tall' tree. You will soon understand the reason after we describe the two heuristics used.

X Esc
Sebelum PgUp
Berikut PgDn

Initialize(N): Create N disjoint sets, all with p[i] = i and rank[i] = 0 (these rank values are initially not shown).


The time complexity of this operation is very clearly O(N).


Due to the limitation of screen size, we set 1 ≤ N ≤ 16.

X Esc
Sebelum PgUp
Berikut PgDn

FindSet(i): From vertex i, recursively go up the tree. That is, from vertex i, we go to vertex p[i]) until we find the root of this tree, which is the representative item with p[i] = i of this disjoint set.


In this FindSet(i) operation, we employ path-compression heuristic after each call of FindSet(i) as now every single vertex along the path from vertex i to the root know that the root is their representative item and can point to it directly in O(1).

X Esc
Sebelum PgUp
Berikut PgDn

If we execute FindSet(12), we will immediately get vertex 12. If we execute FindSet(9) we will get vertex 6 after 1 step and no other change.


Now try executing FindSet(0). If this is your first call on this default UFDS example, it will return vertex 3 after 2 steps and then modify the underlying UFDS structure due to path-compression in action (that is, vertex 0 points to vertex 3 directly). Notice that rank value of rank[1] = 1 is now wrong as vertex 1 becomes a new leaf. However, we will not bother to update its value.


Notice that the next time you execute FindSet(0) again, it will be much faster as the path has been compressed. For now, we assume that FindSet(i) runs in O(1).

X Esc
Sebelum PgUp
Berikut PgDn

IsSameSet(i, j): Simply check if FindSet(i) == FindSet(j) or not. This function is used extensively in Kruskal's MST algorithm. As it only calls FindSet operation twice, we will assume it also runs in O(1).


Note that FindSet function is called inside IsSameSet function, so path-compression heuristic is also indirectly used.

X Esc
Sebelum PgUp
Berikut PgDn

If we call IsSameSet(3, 5), we should get false as vertex 3 and vertex 5 are representative items of their respective disjoint sets and they are different.


Now try IsSameSet(0, 11) on the same default example to see indirect path-compression on vertex 0 and vertex 11. We should get false as the two representative items: vertex 3 and vertex 5, are different. Notice that the rank values at vertex {1, 5, 8} are now wrong. But we will not fix them.

X Esc
Sebelum PgUp
Berikut PgDn

UnionSet(i, j): If item i and j come from two disjoint sets initially, we link the representative item of the shorter tree/disjoint set to the representative item of the taller tree/disjoint set (otherwise, we do nothing). This is also done in O(1).


This is union-by-rank heuristic in action and will cause the resulting tree to be relatively short. Only if the two trees are equally tall before union (by comparing their rank values heuristically — note that we are not comparing their actual heights), then the rank of the resulting tree will increase by one unit.

X Esc
Sebelum PgUp
Berikut PgDn

Also note that FindSet function is called inside UnionSet function, so path-compression heuristic is also indirectly used. Each time path-compression heuristic compresses a path, at least one rank values will be incorrect. We do not bother fixing these rank values as they are only used as guiding heuristic for this UnionSet function.

X Esc
Sebelum PgUp
Berikut PgDn

On the same default example, try UnionSet(9, 12). As the tree that represents disjoint set {6, 9} is currently taller (according to the value of rank[6] = 1), then the shorter tree that represents disjoint set {12} will be slotted under vertex 6, without increasing the height of the combined tree at all.


On the same default example, try UnionSet(0, 11). Notice that the ranks of vertex 3 and vertex 5 are the same rank[3] = rank[5] = 2. Therefore, we can either put vertex 3 under vertex 5 (our implementation) or vertex 5 under vertex 3 (both will increase the resulting height of the combined tree by 1). Notice the indirect path-compression heuristic in action.

X Esc
Sebelum PgUp
Berikut PgDn

Quiz: Starting with N=8 disjoint sets, how tall (heuristically) can the resulting final tree if we call 7 UnionSet(i, j) operations strategically?

rank:5
rank:1
rank:3
rank:2
rank:4

Quiz: Starting with N=8 disjoint sets, how short (heuristically) can the resulting final tree if we call 7 UnionSet(i, j) operations strategically?

rank:5
rank:2
rank:1
rank:4
rank:3


Discussion: Why?

X Esc
Sebelum PgUp
Berikut PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Sebelum PgUp
Berikut PgDn

So far, we say that FindSet(i), IsSameSet(i, j), and UnionSet(i, j) runs in O(1). Actually they run in O(α(N)) if the UFDS is implemented with both path-compression and union-by-rank heuristics.


This α(N) is called the inverse Ackermann function that grows extremely slowly. For practical usage of this UFDS data structure (assuming N ≤ 1M), we have α(1M) ≈ 1.

X Esc
Sebelum PgUp
Berikut PgDn

You have reached the end of the basic stuffs of this UFDS data structure and we encourage you to go to Exploration Mode and explore this simple but interesting data structure using your own examples.


However, we still have a few more interesting UFDS challenges for you.

X Esc
Sebelum PgUp
Berikut PgDn

You can download source code of our custom implementation of Union-Find Disjoint Sets data structure in Object-Oriented Programming (OOP) fashion here (please look for file ch2_unionfind_ds in cpp or java inside the zip file). You are free to customize this implementation to suit your needs as some harder problem requires customization of this basic implementation.


I do wish that one day C++ and/or Java will include this interesting data structure inside C++ STL and/or Java API.

X Esc
Sebelum PgUp
Berikut PgDn

For a few more interesting questions about this data structure, please practice on UFDS training module (no login is required, but short and of medium difficulty setting only).


However, for registered users, you should login and then go to the Main Training Page to officially clear this module (after you have cleared the pre-requisite, which is Graph Data Structures, and such achievement will be recorded in your user account.

X Esc
Sebelum PgUp
Berikut PgDn

Even after clearing the Online Quiz of this UFDS module, do you think that you have really mastered this data structure?


Let us challenge you by asking you to solve two programming problems that somewhat requires the usage of this Union-Find Disjoint Sets data structure: UVa 01329 - Corporative Network and Kattis - control.


Beware that both problems are actual ACM International Collegiate Programming Contest (ICPC) problems, i.e. they are "not trivial".

X Esc
Sebelum PgUp
Berikut PgDn
Selagi aksi dijalankan, tiap langkahnya akan dijelaskan pada panel status.
X Esc
Sebelum PgUp
Berikut PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Sebelum PgUp
Berikut PgDn
Kendalikan animasi dengan tombol kendali! Terdapat pula shortcut melalui keyboard:
Spasi: play/pause/replay
Panah kanan/kiri: maju ke depan/belakang
-/+: turunkan/tingkatkan kecepatan

X Esc
Sebelum PgUp
Berikut PgDn
Kembali ke 'Mode Eksplorasi' untuk memulai eksplorasi!

Harap diingat bahwa jika anda menemukan bug pada visualisasi ini atau bila anda ingin meminta fitur / visualisasi baru, jangan segan-segan untuk menghubungi pemimpin proyek ini: Dr Steven Halim melalui alamat emailnya: stevenhalim at gmail dot com.
X Esc
Sebelum PgUp

Contoh-contoh

Inisialisasi(N)

FindSet(i)

IsSameSet(i, j)

UnionSet(i, j)

>

Tiga Himpunan lepas

Empat Himpunan Lepas

2 Pohon dengan Rank 1

2 Pohon dengan Rank 2

2 Pohon dengan Rank 3

1 Pohon dengan Rank 4

N =

Lakukan

i =

Lakukan

i = , j =

Lakukan

i = , j =

Lakukan

Tentang Tim Syarat Guna

Tentang

VisuAlgo digagas pada tahun 2011 oleh Dr Steven Halim sebagai alat untuk membantu murid-muridnya mengerti struktur data dan algoritma dengan memampukan mereka untuk mempelajari dasar-dasar struktur data dan algoritma secara otodidak dan dengan kecepatan mereka sendiri.


VisuAlgo mempunya banyak algoritma-algoritma tingkat lanjut yang dibahas didalam buku Dr Steven Halim ('Competitive Programming', yang ditulis bersama adiknya Dr Felix Halim) dan lebih lagi. Hari ini, beberapa dari visualisasi/animasi algoritma-algoritma tingkat lanjut ini hanya ditemukan di VisuAlgo.


Meskipun pada khususnya didesain untuk murid-murid National University of Singapore (NUS) yang mengambil berbagai kelas-kelas struktur data dan algoritma (contoh: CS1010, CS1020, CS2010, CS2020, CS3230, dan CS3233), sebagai pendukung pembelajaran online, kami berharap bahwa orang-orang di berbagai belahan dunia menemukan visualisasi-visualisasi di website ini berguna bagi mereka juga.


VisuAlgo tidak didesain untuk layar sentuh kecil (seperti smartphones) dari awalnya karena kami harus membuat banyak visualisasi-visualisasi algoritma kompleks yang membutuhkan banyak pixels dan gestur klik-dan-tarik untuk interaksinya. Resolusi layar minimum untuk pengalaman pengguna yang lumayan adalah 1024x768 dan hanya halaman utama VisuAlgo yang secara relatif lebih ramah dengan layar kecil.


VisuAlgo adalah proyek yang sedang terus berlangsung dan visualisasi-visualisasi yang lebih kompleks sedang dibuat.


Perkembangan yang paling menarik adalah pembuatan pertanyaan otomatis (sistem kuis online) yang bisa dipakai oleh murid-murid untuk menguji pengetahuan mereka tentang dasar-dasar struktur data dan algoritma. Pertanyaan-pertanyaan dibuat secara acak dengan semacam rumus dan jawaban-jawaban murid-murid dinilai secara instan setelah dikirim ke server penilai kami. Sistem kuis online ini, saat sudah diadopsi oleh banyak dosen Ilmu Komputer diseluruh dunia, seharusnya bisa menghapuskan pertanyaan-pertanyaan dasar tentang struktur data dan algoritma dari ujian-ujian di banyak Universitas. Dengan memberikan bobot kecil (tapi tidak kosong) supaya murid-murid mengerjakan kuis online ini, seorang dosen Ilmu Komputer dapat dengan signifikan meningkatkan penguasaan materi dari murid-muridnya tentang pertanyaan-pertanyaan dasar ini karena murid-murid mempunyai kesempatan untuk menjawab pertanyaan-pertanyaan ini yang bisa dinilai secara instan sebelum mereka mengambil kuis online yang resmi. Mode latihan saat ini mempunyai pertanyaan-pertanyaan untuk 12 modul visualisasi. Kami akan segera menambahkan pertanyaan-pertanyaan untuk 8 modul visualisasi lainnya sehingga setiap every modul visualisasi di VisuAlgo mempunyai komponen kuis online.


Cabang pengembangan aktif lainnya adalah sub-proyek penerjemahan dari VisuAlgo. Kami mau menyiapkan basis data kosa kata Ilmu Komputer dalam bahasa Inggris yang digunakan di sistem VisuAlgo. Ini adalah pekerjaan besar yang membutuhkan crowdsourcing. Saat sistem tersebut siap, kami akan mengundang beberapa dari anda untuk berkontribusi, terutama bila bahasa Inggris bukan bahasa ibu anda. Saat ini, kami juga telah menulis catatan-catatan publik tentang VisuAlgo dalam berbagai bahasa:
zh, id, kr, vn, th.

Tim

Pemimpin & Penasihat Proyek (Jul 2011-sekarang)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Murid-Murid S1 Peniliti 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Murid-Murid Proyek Tahun Terakhir/UROP 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Murid-Murid Proyek Tahun Terakhir/UROP 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Murid-Murid S1 Peniliti 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Murid-Murid Proyek Tahun Terakhir/UROP 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Murid-Murid Proyek Tahun Terakhir/UROP 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Ucapan Terima Kasih
Proyek ini dimungkinkan karena Hibah Pengembangan Pengajaran dari NUS Centre for Development of Teaching and Learning (CDTL).

Syarat Guna

VisuAlgo bebas biaya untuk komunitas Ilmu Komputer di dunia. Jika anda menyukai VisuAlgo, satu-satunya pembayaran yang kami minta dari anda adalah agar anda menceritakan keberadaan VisuAlgo kepada murid-murid/dosen-dosen Ilmu Komputer yang anda tahu =) lewat Facebook, Twitter, situs mata kuliah, ulasan di blog, email, dsb.


Jika anda adalah murid/dosen struktur data dan algoritma, anda diijinkan untuk menggunakan situs ini secara langsung di kelas-kelas anda. Jika anda mengambil screen shots (video-video) dari situs ini, anda dapat menggunakan screen shots (video-video) tersebut ditempat lain asalkan anda menyebut URL dari situs ini (http://visualgo.net) dan/atau daftar publikasi dibawah ini sebagai referensi. Tetapi, anda TIDAK diijinkan untuk mengunduh berkas-berkas VisuAlgo (sisi-klien) dan memasangnya di situs anda sendiri karena itu dikategorikan sebagai plagiat. Saat ini, kami TIDAK mengijinkan orang lain untuk membuat cabang/varian dari proyek VisuAlgo ini. Menggunakan kopi offline (sisi-klien) dari VisuAlgo untuk kepentingan pribadi diijinkan.


Ingat bahwa komponen kuis online dari VisuAlgo secara natur membutuhkan sisi-server dan tidak bisa dengan mudah disimpan di komputer lokal. Saat ini, publik hanya bisa menggunkaan 'mode latihan' untuk mengakses sistem kuis online. Saat ini, 'mode ujian' adalah sistem untuk mengakses pertanyaan-pertanyaan acak ini yang digunakan untuk ujian resmi di NUS. Dosen-dosen Ilmu Komputer yang lain harus menghubungi Steven jika anda mau mencoba 'mode ujian' tersebut.


Dafatar Publikasi


Karya ini telah dipresentasikan singkat pada CLI Workshop sewaktu ACM ICPC World Finals 2012 (Poland, Warsaw) dan pada IOI Conference di IOI 2012 (Sirmione-Montichiari, Italy). Anda bisa mengklik link ini untuk membaca makalah kami tahun 2012 tentang sistem ini (yang belum disebut sebagai VisuAlgo pada tahun 2012 tersebut).


Karya ini dibuat denbgan bantuan bekas murid-murid saya. Laporan-laporan proyek yang cukup mutakhir bisa dibaca disini: Erin, Wang Zi, Rose, Ivan.


Laporan Bug atau Meminta Fitur Baru


VisuAlgo bukanlah proyek yang sudah selesai. Dr Steven Halim masih aktif dalam mengembangkan VisuAlgo. Jika anda adalah pengguna VisuAlgo dan menemukan bug di halaman visualisasi/sistem kuis online atau jika anda mau meminta fitur baru, silahkan hubungi Dr Steven Halim. Alamat emailnya adalah gabungan dari namanya dan tambahkan gmail titik com.