>

>
1x
go to beginning previous frame pause play next frame go to end

Struktur data Himpunan Lepas (UFDS) digunakan untuk memodelkan sebuah kumpulan dari himpunan-himpunan yang saling lepas, dan dapat menentukan di himpunan mana sebuah item berada, mengecek apakah dua item-item berasal dari himpunan yang sama, dan menggabungkan dua himpunan berbeda menjadi satu jika diperlukan. Himpunan Lepas dapat digunakan untuk menemukan komponen yang terhubung dalam sebuah graf tak berarah, sehingga dapat digunakan sebagai bagian dari algoritma Kruskal untuk masalah Pohon Perentang Minimum (MST).


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

Lihatlah visualisasi dari contoh UFDS (Himpunan Lepas) di sini!


Setiap pohon melambangkan sebuah himpunan lepas (maka sebuah kumpulan dari himpunan-himpunan lepas tersebut membentuk sebuah hutan) dan akar (root) dari setiap pohon adalah item representatif dari himpunan lepas ini.


Sekarang berhenti dan lihatlah pohon-pohon yang sekarang sedang divisualisasikan. Ada berapa jumlah item-item disana? Berapa jumlah himpunan lepas di sana? Siapa saja anggota dari setiap himpunan lepas tersebut? Apakah item representasi dari setiap himpunan lepas yang ada?


Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑
Karena kami menetapkan contoh default untuk kuliah maya ini, jawaban-jawaban anda harusnya: N=13 dan ada 4 himpunan lepas: {0,1,2,3,4,10}, {5,7,8,11}, {6,9}, {12} dengan anggota-anggota yang digaris bawahi adalah item-item representatif (dari himpunan lepas mereka).

Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

Kita bisa dengan mudah mengingat hutan pohon dengan sebuah larik p dengan ukuran N anggota-anggota dimana p[i] menyimpan orang tua dari item i dan jika p[i] = i, maka i adalah akar dari pohon ini dan juga adalah item representatif dari himpunan yang mengandung item i.


Sekali lagi, lihatlah visualisasi diatas dan tentukan nilai-nilai didalam larik p ini.


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

Pada contoh tetap yang sama, jawaban-jawaban anda harusnya p = [1, 3, 3, 3, 3, 5, 6, 5, 5, 6, 4, 8,12] dengan ukuran N = 13 untuk p[0] sampai p[12].


Anda dapat mengecek bahwa p[3] = 3p[5] = 5p[6] = 6, dan p[12] = 12, yang adalah konsisten dengan fakta bahwa {3,5,6,12} adalah item-item representatif (dari himpunan lepas mereka sendiri).

🕑

Kita juga menyimpan satu lagi informasi di dalam larik rank juga dengan ukuran N. Nilai dari rank[i] adalah batas-atas dari tinggi sub-pohon yang berakar pada simpul i yang akan digunakan sebagai heuristik pembimbing untuk operasi UnionSet(i, j). Anda akan menyadari nanti bahwa setelah heuristik 'kompresi-jalur' (akan dijelaskan segera) mengkompres sebuah jalur, nilai-nilai peringkat tidak lagi merefleksikan tinggi sesungguhnya dari sub-pohon tersebut.


Karena banyak item-item dengan peringkat 0, kami mengatur visualisasi sebagai berikut untuk mengurangi kekacauan: Hanya jika peringkat dari sebuah simpul i lebih besar dari 0, maka VisuAlgo akan menunjukkan nilai dari rank[i] (disingkat sebagai satu karakter r) sebagai teks berwarna merah dibawah simpul i.

🕑

Pada contoh tetap yang sama, verifikasi bahwa {1,4,6,8} memiliki peringkat 1 dan {3,5} memiliki peringkat 2, dan yang lainnya memiliki peringkat 0 (tidak ditunjukkan).


Pada saat ini, semua nilai-nilai peringkat adalah benar, yaitu mereka benar-benar mendeskripsikan tinggi dari sub-pohon yang berakar pada simpul tersebut. Kita akan segera melihat bahwa mereka tidak akan selalu benar di beberapa slide-slide berikutnya.

🕑

Terdapat lima operasi-operasi UFDS (Himpunan Lepas) dalam halaman visualisasi ini:
Contoh-Contoh, Inisialisasi(N), FindSet(i), IsSameSet(i, j), dan UnionSet(i, j).


Operasi pertama (Contoh-Contoh) adalah sederhana: Berikan daftar struktur-struktur Himpunan Lepas dengan berbagai karakteristik-karakteristik untuk titik permulaan anda. Mode kuliah maya ini selalu menggunakan contoh 'Empat Himpunan Lepas' sebagai titik permulaan.


Juga sadari bahwa tidak ada satupun dari contoh-contoh yang memiliki 'pohon yang tinggi'. Anda akan segera mengerti alasannya setelah kami menjelaskan dua heuristik-heuristik yang dipakai.

🕑

Inisialisasi(N): Membuat N himpunan lepas, semuanya dengan p[i] = i dan rank[i] = 0 (pada awalnya, nilai-nilai rank ini tidak ditunjukkan).

Kompleksitas waktu dari operasi ini jelas sekali adalah O(N).

Dikarenakan terbatasnya ukuran layar, kami mengatur 1 ≤ N ≤ 16.

🕑

FindSet(i): Dari simpul i, pergi ke arah atas di dalam pohon secara rekursif. Yaitu, dari simpul i, kita pergi ke simpul p[i]) hingga kita sampai pada akar dari pohon tersebut, yang adalah item representasi dengan p[i] = i dari himpunan lepas ini.


Dalam operasi FindSet(i), kami menggunakan heuristik kompresi-jalur setelah setiap panggilan kepada FindSet(i) karena sekarang setiap simpul yang terdapat dalam jalur dari simpul i ke akar dari pohon ini mengetahui bahwa akar tersebut adalah item representatif mereka dan dapat langsung menunjuk kepada akar tersebut secara langsung dalam O(1).

🕑

Jika kita melakukan FindSet(12), kita akan dengan segera mendapat simpul 12. Jika kita melakukan FindSet(9), kita akan mendapat simpul 6 setelah 1 langkah dan tidak ada perubahan apapun.


Sekarang coba eksekusi FindSet(0). Jika ini adalah panggilan pertama anda pada contoh default Himpunan Lepas ini, maka fungsi tersebut akan mengembalikan simpul 3 setelah 2 langkah dan lalu mengubah struktur Himpuna Lepas karena aksi dari kompresi-jalur (yaitu, simpul 0 langsung menunjuk kepada simpul 3 secara langsung). Sadari bahwa nilai peringkat dari rank[1] = 1 sekarang menjadi salah karena simpul 1 menjadi sebuah daun baru. Tetapi, kita tidak akan mempedulikan untuk memutakhirkan nilai peringkat ini.


Sadari bahwa kali berikutnya anda mengeksekusi FindSet(0) lagi, fungsi tersebut akan menjadi jauh lebih cepat karena jalurnya telah terkompres. Untuk saat ini, kita asumsikan bahwa FindSet(i) berjalan dalam O(1).

🕑

IsSameSet(i, j): Cek saja apakah FindSet(i) == FindSet(j). Fungsi ini digunakan secara ektensif pada algoritma MST Kruskal. Karena fungsi ini hanya memanggil operasi FindSet dua kali, kita akan mengasumsikan bahwa fungsi ini juga berjalan dalam O(1).


Perlu diingat bahwa fungsi FindSet dipanggil di dalam fungsi isSameSet, maka heuristik kompresi-jalur juga digunakan secara tidak langsung.

🕑

Jika kita memanggil IsSameSet(3, 5), kita harusnya mendapatkan false karena simpul 3 dan simpul 5 adalah item-item representatif dari himpunan-himpunan lepas mereka dan mereka berbeda.


Sekarang cobalah IsSameSet(0, 11) padah contoh default yang sama untuk melihat kompresi-jalur secara tidak langsung pada simpul 0 dan simpul 11. Kita harusnya mendapatkan false karena dua item-item representatif: simpul 3 dan simpul 5, adalah berbeda. Sadari bahwa nilai-nilai peringkat pada simpul {1, 5, 8} sekarang semuanya salah. Tetapi kita tidak akan memperbaikinya.

🕑

UnionSet(i, j): Bila i dan j berasal dari dua himpunan lepas yang berbeda pada awalnya, kita menghubungkan item representatif dari pohon/himpunan lepas yang lebih pendek dengan item representatif dari pohon/himpunan lepas yang lebih tinggi (kalau tidak, kita tidak berbuat apa-apa). Ini juga dilakukan dalam O(1).


Ini adalah efek dari heuristik penggabungan-berdasarkan-peringkat (union-by-rank) dan akan mengakibatkan pohon yang dihasilkan secara relatif pendek. Hanya jika kedua pohon-pohon memiliki tinggi yang sama sebelum digabungkan (dengan membandingkan nilai-nilai peringkat mereka secara heuristik catat bahwa kita tidak membandingkan tinggi-tinggi mereka yang sebenarnya), maka peringkat dari pohon yang dihasilkan akan meningkat sebanyak satu unit.

🕑
Catat juga bahwa fungsi FindSet dipanggil dari fungsi UnionSet, jadi heuristik kompresi-jalur juga secara tidak langsung dipakai. Setiap kali heuristik kompresi-jalur mengkompres sebuah jalur, setidaknya satu dari nilai peringkat akan menjadi salah. Kita tidak perlu memperbaiki nilai-nilai peringkat ini karena mereka hanya dipakai sebagai heuristik pembimbing untuk fungsi UnionSet ini.
🕑

Pada contoh default yang sama, cobalah UnionSet(9, 12). Karena pohon yang merepresentasikan himpunan lepas {6, 9} saat ini lebih tinggi (menurut nilai dari rank[6] = 1), maka pohon yang lebih pendek yang merepresentasikan himpunan lepas {12} akan ditaruh dibawah simpul 6, tanpa meningkatkan tinggi dari pohon gabungan sama sekali.


Pada contoh default yang sama, cobalah UnionSet(0, 11). Sadari bahwa peringkat-peringkat dari simpul 3 dan simpul 5 adalah sama, yaitu rank[3] = rank[5] = 2. Oleh karena itu, kita bisa menaruh simpul 3 dibawah simpul 5 (implementasi kami) atau simpul 5 dibawah simpul 3 (kedua opsi akan meningkatkan tinggi dari pohon gabungan sebesar 1). Sadari heuristik kompresi-jalur dipkai secara tidak langsung.

🕑

Quiz: Starting with N=8 disjoint sets, how tall (heuristically) can the resulting final tree if we call 7 UnionSet(i, j) operations strategically?

rank:1
rank:4
rank:2
rank:5
rank:3

Quiz: Starting with N=8 disjoint sets, how short (heuristically) can the resulting final tree if we call 7 UnionSet(i, j) operations strategically?

rank:1
rank:3
rank:2
rank:4
rank:5


Diskusi: Kenapa?

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

So far, we say that FindSet(i), IsSameSet(i, j), and UnionSet(i, j) runs in O(1). Actually they run in O(α(N)) if the UFDS is implemented with both path-compression and union-by-rank heuristics.


This α(N) is called the inverse Ackermann function that grows extremely slowly. For practical usage of this UFDS data structure (assuming N ≤ 1M), we have α(1M) ≈ 1.

🕑
Anda telah mencapai akhir dari informasi mendasar mengenai struktur data Himpunan Lepas dan kami mendorong anda untuk pergi ke Mode Eksplorasi dan mengeksplorasi struktur data mudah tapi menarik ini menggunakan contoh-contoh anda sendiri.

Akan tetapi, kami masih memiliki tantangan-tantangan Himpunan Lepas yang lebih menarik untuk anda.
🕑
Lihatlah implementasi-implementasi dari struktur data Himpunan Lepas ini dalam bahasa C++/Python/Java/OCaml dalam format Pemograman Berorientasi Objek (OOP)unionfind_ds.cpp | py | java | ml).

Anda bebas memodifikasi implementasi ini sesuai dengan kebutuhan anda karena beberapa soal-soal yang lebih sulit memerlukan pengubahan atas implementasi dasar ini.

Saya berharap suatu hari C++/Python/Java/OCaml/bahasa-bahasa pemrograman lainnya akan memasukkan struktur data menarik ini ke Java akan memasukkan struktur data menarik ini dalam perpustakaan dasar mereka.
🕑

For a few more interesting questions about this data structure, please practice on Union-Find Disjoint Sets training module.

🕑

Even after clearing the Online Quiz of this UFDS module, do you think that you have really mastered this data structure?


Let us challenge you by asking you to solve two programming problems that somewhat requires the usage of this Union-Find Disjoint Sets data structure: UVa 01329 - Corporative Network and Kattis - control.


Beware that both problems are actual International Collegiate Programming Contest (ICPC) problems, i.e., they are "not trivial".

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

Notice that there is no 'undo' operation for Union-Find Disjoint Sets (UFDS) data structure. Once two initially disjoint sets were union-ed, it is not easy to split them back into the original two disjoint sets, especially when path compressions have flattened the combined tree.


Discussion: So what to do if we need this 'de-Union' or 'split' or 'cut' operation?

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Contoh-contoh

Inisialisasi

FindSet

IsSameSet

UnionSet

>

Empat Himpunan Lepas

Tiga Himpunan lepas

Two disjoint sets

1 Pohon dengan Rank 4

N =

 into

M =

  disjoint sets of rank ≤ 1 

Lakukan

i =

Lakukan

i =
j =

Lakukan

i =
j =

Lakukan

We use cookies to improve our website.
By clicking ACCEPT, you agree to our use of Google Analytics for analysing user behaviour and improving user experience as described in our Privacy Policy.
By clicking reject, only cookies necessary for site functions will be used.

ACCEPT REJECT
Tentang Tim Syarat Guna Kebijakan Privasi

Tentang

VisuAlgo digagas pada tahun 2011 oleh Dr Steven Halim sebagai alat untuk membantu murid-muridnya mengerti struktur-struktur data dan algoritma-algoritma, dengan memampukan mereka untuk mempelajari dasar-dasarnya secara otodidak dan dengan kecepatan mereka sendiri.


VisuAlgo mempunya banyak algoritma-algoritma tingkat lanjut yang dibahas didalam buku Dr Steven Halim ('Competitive Programming', yang ditulis bersama adiknya Dr Felix Halim dan temannya Dr Suhendry Effendy) dan lebih lagi. Hari ini, beberapa dari visualisasi/animasi algoritma-algoritma tingkat lanjut ini hanya ditemukan di VisuAlgo.


Meskipun pada khususnya didesain untuk murid-murid National University of Singapore (NUS) yang mengambil berbagai kelas-kelas struktur data dan algoritma (contoh: CS1010/setara, CS2040/setara, CS3230, CS3233, dan CS4234), sebagai pendukung pembelajaran online, kami berharap bahwa orang-orang di berbagai belahan dunia menemukan visualisasi-visualisasi di website ini berguna bagi mereka juga.


VisuAlgo tidak didesain untuk layar sentuh kecil (seperti smartphones) dari awalnya karena kami harus membuat banyak visualisasi-visualisasi algoritma kompleks yang membutuhkan banyak pixels dan gestur klik-dan-tarik untuk interaksinya. Resolusi layar minimum untuk pengalaman pengguna yang lumayan adalah 1024x768 dan hanya halaman utama VisuAlgo yang secara relatif lebih ramah dengan layar kecil. Tetapi, kami sedang bereksperimen dengan versi mobil (kecil) dari VisuAlgo yang akan siap pada April 2022.


VisuAlgo adalah proyek yang sedang terus berlangsung dan visualisasi-visualisasi yang lebih kompleks sedang dibuat.


Perkembangan yang paling menarik adalah pembuatan pertanyaan otomatis (sistem kuis online) yang bisa dipakai oleh murid-murid untuk menguji pengetahuan mereka tentang dasar struktur-struktur data dan algoritma-algoritma. Pertanyaan-pertanyaan dibuat secara acak dengan semacam rumus dan jawaban-jawaban murid-murid dinilai secara instan setelah dikirim ke server penilai kami. Sistem kuis online ini, saat sudah diadopsi oleh banyak dosen Ilmu Komputer diseluruh dunia, seharusnya bisa menghapuskan pertanyaan-pertanyaan dasar tentang struktur data dan algoritma dari ujian-ujian di banyak Universitas. Dengan memberikan bobot kecil (tapi tidak kosong) supaya murid-murid mengerjakan kuis online ini, seorang dosen Ilmu Komputer dapat dengan signifikan meningkatkan penguasaan materi dari murid-muridnya tentang pertanyaan-pertanyaan dasar ini karena murid-murid mempunyai kesempatan untuk menjawab pertanyaan-pertanyaan ini yang bisa dinilai secara instan sebelum mereka mengambil kuis online yang resmi. Mode latihan saat ini mempunyai pertanyaan-pertanyaan untuk 12 modul visualisasi. Kami akan segera menambahkan pertanyaan-pertanyaan untuk 12 modul visualisasi yang lainnya sehingga setiap setiap modul visualisasi di VisuAlgo mempunyai komponen kuis online.


Kami telah menerjemahkan halaman-halaman VisuALgo ke tiga bahasa-bahasa utama: Inggris, Mandarin, dan Indonesia. Saat ini, kami juga telah menulis catatan-catatan publik tentang VisuAlgo dalam berbagai bahasa:

id, kr, vn, th.

Tim

Pemimpin & Penasihat Proyek (Jul 2011-sekarang)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

Murid-Murid S1 Peniliti 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Murid-Murid Proyek Tahun Terakhir/UROP 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Murid-Murid Proyek Tahun Terakhir/UROP 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Murid-Murid S1 Peniliti 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Murid-Murid Proyek Tahun Terakhir/UROP 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Murid-Murid Proyek Tahun Terakhir/UROP 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

Murid-Murid Proyek Tahun Terakhir/UROP 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

List of translators who have contributed ≥100 translations can be found at statistics page.

Ucapan Terima Kasih
Proyek ini dimungkinkan karena Hibah Pengembangan Pengajaran dari NUS Centre for Development of Teaching and Learning (CDTL).

Syarat Guna

VisuAlgo is free of charge for Computer Science community on earth. If you like VisuAlgo, the only "payment" that we ask of you is for you to tell the existence of VisuAlgo to other Computer Science students/instructors that you know =) via Facebook/Twitter/Instagram/TikTok posts, course webpages, blog reviews, emails, etc.

If you are a data structure and algorithm student/instructor, you are allowed to use this website directly for your classes. If you take screen shots (videos) from this website, you can use the screen shots (videos) elsewhere as long as you cite the URL of this website (https://visualgo.net) and/or list of publications below as reference. However, you are NOT allowed to download VisuAlgo (client-side) files and host it on your own website as it is plagiarism. As of now, we do NOT allow other people to fork this project and create variants of VisuAlgo. Using the offline copy of (client-side) VisuAlgo for your personal usage is fine.

Note that VisuAlgo's online quiz component is by nature has heavy server-side component and there is no easy way to save the server-side scripts and databases locally. Currently, the general public can only use the 'training mode' to access these online quiz system. Currently the 'test mode' is a more controlled environment for using these randomly generated questions and automatic verification for real examinations in NUS.

List of Publications

This work has been presented briefly at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

This work is done mostly by my past students. 

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

Kebijakan Privasi

Versi 1.1 (Dimutakhirkan Jum, 14 Jan 2022).

Pemberitahuan kepada semua pengunjung: Kami saat ini menggunakan Google Analytics untuk mendapatkan pengertian garis besar tentang pengunjung-pengunjung situs kami. Kami sekarang memberikan opsi kepada pengguna untuk Menerima atau Menolak pelacak ini.

Sejak Rabu, 22 Des 2021, hanya staff-staff/murid-murid National University of Singapore (NUS) dan dosen-dosen Ilmu Komputer diluar dari NUS yang telah menulis kepada Steven dapat login ke VisuAlgo, orang-orang lain di dunia harus memakai VisuAlgo sebagai pengguna anonim yang tidak benar-benar terlacak selain apa yang dilacak oleh Google Analytics.

Untuk murid-murid NUS yang mengambil mata kuliah yang menggunakan VisuAlgo: Dengan menggunakan akun VisuAlgo (sebuah tupel dari alamat email NUS resmi, nama murid resmi NUS seperti dalam daftar kelas, dan sebuah kata sandi yang dienkripsi pada sisi server — tidak ada data personal lainnya yang disimpan), anda memberikan ijin kepada dosen modul anda untuk melacak pembacaan slide-slide kuliah maya dan kemajuan latihan kuis online yang dibutuhkan untuk menjalankan modul tersebut dengan lancar. Akun VisuAlgo anda akan juga dibutuhkan untuk mengambil kuis-kuis VisuAlgo online resmi sehingga memberikan kredensial akun anda ke orang lain untuk mengerjakan Kuis Online sebagai anda adalah pelanggaran akademis.. Akun pengguna anda akan dihapus setelah modul tersebut selesai kecuali anda memilih untuk menyimpan akun anda (OPT-IN). Akses ke basis data lengkap dari VisuAlgo (dengan kata-kata sandi terenkripsi) dibatasi kepada Steven saja.

Untuk murid-murid NUS lainnya, anda dapat mendaftarkan sendiri sebuah akun VisuAlgo (OPT-IN).

Untuk dosen-dosen Ilmu Komputer di seluruh dunia yang telah menulis kepada Steven, sebuah akun VisuAlgo (alamat email (bukan-NUS), anda dapat menggunakan nama panggilan apapun, dan kata sandi terenkripsi) dibutuhkan untuk membedakan kredensial online anda dibandingkan dengan orang-orang lain di dunia. Akun anda akan dilacak seperti seorang murid NUS biasa diatas tetapi akun anda akan mempunya fitur-fiture spesifik untuk dosen-dosen Ilmu Komputer, yaitu kemampuan untuk melihat slide-slide tersembunyi yang berisi jawaban-jawaban (menarik) dari pertanyaan-pertanyaan yang dipresentasikan di slide-slide sebelumnya sebelum slide-slide tersembunyi tersebut. Anda juga dapat mengakses setingan Susah dari Kuis-Kuis Online VisuAlgo. Anda dapat dengan bebas menggunakan materi-materia untuk memperkaya kelas-kelas struktur-struktur data dan algoritma-algoritma anda. Catatan: Mungkin ada fitur-fitur khusus tambahan untuk dosen Ilmu Komputer di masa mendatang.

Untuk siapapun dengan akun VisuAlgo, anda dapat membuang akun anda sendiri bila anda tidak mau lagi diasosiasikan dengan tool VisuAlgo ini.