>

>
1x
go to beginning previous frame pause play next frame go to end

Maximum (Max) Flow is one of the problems in the family of problems involving flow in networks.


In Max Flow problem, we aim to find the maximum flow from a particular source vertex s to a particular sink vertex t in a directed weighted graph G.


There are several algorithms for finding the maximum flow including Ford-Fulkerson method, Edmonds-Karp algorithm, and Dinic's algorithm (there are a few others, but they are not included in this visualization yet).


The dual problem of Max Flow is Min Cut, i.e., by finding the max s-t flow of G, we also simultaneously find the min s-t cut of G, i.e., the set of edges with minimum weight that have to be removed from G so that there is no path from s to t in G.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

Max-Flow (or Min-Cut) problems arise in various applications, e.g.,

  1. Transportation-related problems (what is the best way to send goods/material from s (perhaps a factory) to t (perhaps a super-sink of all end-users)
  2. Network attacks problems (sabotage/destroy some edges to disconnect two important points s and t)
  3. (Bipartite) Matching and Assignment problems (that also has specialized algorithms, see Graph Matching visualization
  4. Sport teams prospects
  5. Image segmentation, etc...

Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

This visualization page will show the execution of a chosen Max Flow algorithm running on a flow (residual) graph.


To make the visualization of these flow graphs consistent, we enforce a graph drawing rule for this page whereby the source vertex s/sink vertex t is always vertex 0/V-1 and is always drawn on the leftmost/rightmost side of the visualization, respectively. Another visualization-specific constraint is that the edge capacities are integers between [1..99].


These visualization-specific constraints are not exist in the standard max flow problems.


Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

The input for a Max Flow algorithm is a flow graph (a directed weighted graph G = (V, E) where edge weight represent the capacity (the unit is problem-dependent, e.g., liters/second, person/hour, etc) of flow that can go through that edge) with two distinguished vertices: The source vertex s and the sink/target/destination vertex t. The flow graph is usually s-t connected, i.e., there is at least one path from s to t.


In this visualization, these two additional inputs of s (usually vertex 0) and t (usually vertex V-1) are asked before the execution of the chosen Max Flow algorithm and can be customized by the user.


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

The output for a Max Flow algorithm is an assignment of flow f to each edge that satisfies two important constraints:

  1. Capacity constraints (flow on each edge (f(e)) is between 0 and its (unit) capacity (c(e)), i.e., 0 ≤ f(e) ≤ c(e)), and
  2. Equilibrium constraints (for every vertex except s and t, flow-in = flow-out)
so that the value of the flow (value(f) = ∑v: (s, v) ∈ E f(s,v)) is maximum.


In this visualization, we focus on showing the final max flow value and the final ST-min cut components at the end of each max flow algorithm execution, instead of the precise assignment of flow f to each edge, i.e., f(e) must be computed manually from the initial capacity c(e) (first frame of the animation) minus the final residual capacity of that edge e (last frame of the animation).

🕑

At the start of the three Max Flow algorithms discussed in this visualization (Ford-Fulkerson method, Edmonds-Karp algorithm, and Dinic's algorithm), the initial flow graph is converted into residual graph (with potential addition of back flow edges with initial capacity of zeroes).


The edges in the residual graph store the remaining capacities of those edges that can be used by future flow(s). At the beginning, these remaining capacities equal to the original capacities as specified in the input flow graph.


A Max Flow algorithm will send flows to use some (or all) of these available capacities, iteratively.


Once the remaining capacity of an edge reaches 0, that edge can no longer admit any more flow.

🕑

There are three different sources for specifying an input flow graph:

  1. Draw Graph: You can draw any directed weighted (weight ∈ [1..99]) graph as the input flow graph with vertex 0 as the default source vertex (the left side of the screen) and vertex V-1 as the default sink vertex (the right side of the screen),
  2. Modeling: Several graph problems can be reduced into a Max Flow problem. In this visualization, we have the modeling examples for the famous Maximum Cardinality Bipartite Matching (MCBM) problem, Rook Attack problem (currently disabled), and Baseball Elimination problem (currently disabled),
  3. Example Graphs: You can select from the list of our selected example flow graphs to get you started.
🕑

There are three different max flow algorithms in this visualization:

  1. The slow O(mf × E) Ford-Fulkerson method,
  2. The O(V × E^2) Edmonds-Karp algorithm, or
  3. The O(V^2 × E) Dinic's algorithm.
🕑

For the three Max Flow algorithms discussed in this visualization, successive flows are sent from the source vertex s to the sink vertex t via available augmenting paths (augmenting path is a path from s to t that goes through edges with positive weight residual capacity (c(e)-f(e)) left).


The three Max Flow algorithms in this visualization have different behavior on how they find augmenting paths.


However, all three Max Flow algorithms in this visualization stop when there is no more augmenting path possible and report the max flow value (and the assignment of flow on each edge in the flow graph).


Later we will discuss that this max flow value is also the min cut value of the flow graph (that famous Max-Flow/Min-Cut Theorem).

🕑
start with 0 flow
while there exists an augmenting path: // iterative algorithm
  find an augmenting path (for now, 'any' graph traversal will do)
  compute bottleneck capacity
  increase flow on the path by the bottleneck capacity
🕑

This famous theorem states that in a flow network, the maximum flow from s to t is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges that have to be removed to disconnect s from t.


In a typical Computer Science classes, the lecturer will usually spend some time to properly explain this theorem (explaining what is an st-cut, capacity of an st-cut, net flow across an st-cut equals to current flow f assignment that will never exceed the capacity of the cut, and finally that Max-Flow/Min-Cut Theorem). For this visualization, we just take this statement as it is.

🕑

Using the Max-Flow/Min-Cut Theorem, we can then prove that flow f is a maximum flow if and only if there is no (more) augmenting path remaining in the residual graph.


As this is what Ford-Fulkerson Method is doing, we can conclude the correctness of this Ford-Fulkerson Method, i.e., if Ford-Fulkerson Method terminates, then there is no augmenting path left and thus the resulting flow is maximum.

🕑

Ford-Fulkerson method always terminates if the capacities are integers.


This is because every iteration of Ford-Fulkerson method always finds a new augmenting path and each augmenting path must has bottleneck capacity at least 1 (due to that integer constraint). Therefore, each iteration increases the flow of at least one edge by at least 1, edging the Ford-Fulkerson closer to termination.


As the number of edges is finite (as well as the finite max capacity per edge), this guarantees the eventual termination of Ford-Fulkerson method when the max flow mf is reached and there is no more augmenting path left.


In the worst case, Ford-Fulkerson method runs for mf iterations, and each time it uses O(E) DFS. The rough overall runtime is thus O(mf × E).

🕑

Idea: What if we don't consider any augmenting paths but consider augmenting paths with the smallest number of edges involved first (so we don't put flow on more edges than necessary).


Implementation: We first ignore capacity of the edges first (assume all edges in the residual graph have weight 1), and we run O(E) BFS to find the shortest (in terms of # of edges used) augmenting path. Everything else is the same as the basic Ford-Fulkerson Method outlined earlier.


It can be proven that Edmonds-Karp will use at most O(VE) iterations thus it runs in at most in O(VE * E) = O(VE^2) time.

🕑

This is a stub.


Dinic's run in a faster time O(V^2 × E) due to the more efficient usage of BFS shortest path information.

🕑

We can constructively identify the edges in the Min-Cut after running any Max-Flow algorithm until it terminates.


Details later, this is a stub.

🕑

When you are presented with a Max Flow (or a Min Cut)-related problem, we do not have to reinvent the wheel every time.


You are allowed to use/modify our implementation code for Max Flow Algorithms (Edmonds-Karp/Dinic's): maxflow.cpp | py | java | ml.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Gambar Grafik

Modeling

Graf-Graf Contoh

Ford-Fulkerson

Edmonds-Karp

Dinic

>

Pencocokan Bipartit

CP3 4.24*

CP3 4.26.1 (s-lim)

CP3 4.26.2 (t-lim)

CP3 4.26.3

Ford-Fulkerson Killer

Dinic Showcase

s =
t =

Lakukan

s =
t =

Lakukan

s =
t =

Lakukan

We use cookies to improve our website.
By clicking ACCEPT, you agree to our use of Google Analytics for analysing user behaviour and improving user experience as described in our Privacy Policy.
By clicking reject, only cookies necessary for site functions will be used.

ACCEPT REJECT
Tentang Tim Syarat Guna Kebijakan Privasi

Tentang

VisuAlgo digagas pada tahun 2011 oleh Dr Steven Halim sebagai alat untuk membantu murid-muridnya mengerti struktur-struktur data dan algoritma-algoritma, dengan memampukan mereka untuk mempelajari dasar-dasarnya secara otodidak dan dengan kecepatan mereka sendiri.


VisuAlgo mempunya banyak algoritma-algoritma tingkat lanjut yang dibahas didalam buku Dr Steven Halim ('Competitive Programming', yang ditulis bersama adiknya Dr Felix Halim dan temannya Dr Suhendry Effendy) dan lebih lagi. Hari ini, beberapa dari visualisasi/animasi algoritma-algoritma tingkat lanjut ini hanya ditemukan di VisuAlgo.


Meskipun pada khususnya didesain untuk murid-murid National University of Singapore (NUS) yang mengambil berbagai kelas-kelas struktur data dan algoritma (contoh: CS1010/setara, CS2040/setara, CS3230, CS3233, dan CS4234), sebagai pendukung pembelajaran online, kami berharap bahwa orang-orang di berbagai belahan dunia menemukan visualisasi-visualisasi di website ini berguna bagi mereka juga.


VisuAlgo tidak didesain untuk layar sentuh kecil (seperti smartphones) dari awalnya karena kami harus membuat banyak visualisasi-visualisasi algoritma kompleks yang membutuhkan banyak pixels dan gestur klik-dan-tarik untuk interaksinya. Resolusi layar minimum untuk pengalaman pengguna yang lumayan adalah 1024x768 dan hanya halaman utama VisuAlgo yang secara relatif lebih ramah dengan layar kecil. Tetapi, kami sedang bereksperimen dengan versi mobil (kecil) dari VisuAlgo yang akan siap pada April 2022.


VisuAlgo adalah proyek yang sedang terus berlangsung dan visualisasi-visualisasi yang lebih kompleks sedang dibuat.


Perkembangan yang paling menarik adalah pembuatan pertanyaan otomatis (sistem kuis online) yang bisa dipakai oleh murid-murid untuk menguji pengetahuan mereka tentang dasar struktur-struktur data dan algoritma-algoritma. Pertanyaan-pertanyaan dibuat secara acak dengan semacam rumus dan jawaban-jawaban murid-murid dinilai secara instan setelah dikirim ke server penilai kami. Sistem kuis online ini, saat sudah diadopsi oleh banyak dosen Ilmu Komputer diseluruh dunia, seharusnya bisa menghapuskan pertanyaan-pertanyaan dasar tentang struktur data dan algoritma dari ujian-ujian di banyak Universitas. Dengan memberikan bobot kecil (tapi tidak kosong) supaya murid-murid mengerjakan kuis online ini, seorang dosen Ilmu Komputer dapat dengan signifikan meningkatkan penguasaan materi dari murid-muridnya tentang pertanyaan-pertanyaan dasar ini karena murid-murid mempunyai kesempatan untuk menjawab pertanyaan-pertanyaan ini yang bisa dinilai secara instan sebelum mereka mengambil kuis online yang resmi. Mode latihan saat ini mempunyai pertanyaan-pertanyaan untuk 12 modul visualisasi. Kami akan segera menambahkan pertanyaan-pertanyaan untuk 12 modul visualisasi yang lainnya sehingga setiap setiap modul visualisasi di VisuAlgo mempunyai komponen kuis online.


Kami telah menerjemahkan halaman-halaman VisuALgo ke tiga bahasa-bahasa utama: Inggris, Mandarin, dan Indonesia. Saat ini, kami juga telah menulis catatan-catatan publik tentang VisuAlgo dalam berbagai bahasa:

id, kr, vn, th.

Tim

Pemimpin & Penasihat Proyek (Jul 2011-sekarang)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

Murid-Murid S1 Peniliti 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Murid-Murid Proyek Tahun Terakhir/UROP 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Murid-Murid Proyek Tahun Terakhir/UROP 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Murid-Murid S1 Peniliti 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Murid-Murid Proyek Tahun Terakhir/UROP 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Murid-Murid Proyek Tahun Terakhir/UROP 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

Murid-Murid Proyek Tahun Terakhir/UROP 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

List of translators who have contributed ≥100 translations can be found at statistics page.

Ucapan Terima Kasih
Proyek ini dimungkinkan karena Hibah Pengembangan Pengajaran dari NUS Centre for Development of Teaching and Learning (CDTL).

Syarat Guna

VisuAlgo is free of charge for Computer Science community on earth. If you like VisuAlgo, the only "payment" that we ask of you is for you to tell the existence of VisuAlgo to other Computer Science students/instructors that you know =) via Facebook/Twitter/Instagram/TikTok posts, course webpages, blog reviews, emails, etc.

If you are a data structure and algorithm student/instructor, you are allowed to use this website directly for your classes. If you take screen shots (videos) from this website, you can use the screen shots (videos) elsewhere as long as you cite the URL of this website (https://visualgo.net) and/or list of publications below as reference. However, you are NOT allowed to download VisuAlgo (client-side) files and host it on your own website as it is plagiarism. As of now, we do NOT allow other people to fork this project and create variants of VisuAlgo. Using the offline copy of (client-side) VisuAlgo for your personal usage is fine.

Note that VisuAlgo's online quiz component is by nature has heavy server-side component and there is no easy way to save the server-side scripts and databases locally. Currently, the general public can only use the 'training mode' to access these online quiz system. Currently the 'test mode' is a more controlled environment for using these randomly generated questions and automatic verification for real examinations in NUS.

List of Publications

This work has been presented briefly at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

This work is done mostly by my past students. 

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

Kebijakan Privasi

Versi 1.1 (Dimutakhirkan Jum, 14 Jan 2022).

Pemberitahuan kepada semua pengunjung: Kami saat ini menggunakan Google Analytics untuk mendapatkan pengertian garis besar tentang pengunjung-pengunjung situs kami. Kami sekarang memberikan opsi kepada pengguna untuk Menerima atau Menolak pelacak ini.

Sejak Rabu, 22 Des 2021, hanya staff-staff/murid-murid National University of Singapore (NUS) dan dosen-dosen Ilmu Komputer diluar dari NUS yang telah menulis kepada Steven dapat login ke VisuAlgo, orang-orang lain di dunia harus memakai VisuAlgo sebagai pengguna anonim yang tidak benar-benar terlacak selain apa yang dilacak oleh Google Analytics.

Untuk murid-murid NUS yang mengambil mata kuliah yang menggunakan VisuAlgo: Dengan menggunakan akun VisuAlgo (sebuah tupel dari alamat email NUS resmi, nama murid resmi NUS seperti dalam daftar kelas, dan sebuah kata sandi yang dienkripsi pada sisi server — tidak ada data personal lainnya yang disimpan), anda memberikan ijin kepada dosen modul anda untuk melacak pembacaan slide-slide kuliah maya dan kemajuan latihan kuis online yang dibutuhkan untuk menjalankan modul tersebut dengan lancar. Akun VisuAlgo anda akan juga dibutuhkan untuk mengambil kuis-kuis VisuAlgo online resmi sehingga memberikan kredensial akun anda ke orang lain untuk mengerjakan Kuis Online sebagai anda adalah pelanggaran akademis.. Akun pengguna anda akan dihapus setelah modul tersebut selesai kecuali anda memilih untuk menyimpan akun anda (OPT-IN). Akses ke basis data lengkap dari VisuAlgo (dengan kata-kata sandi terenkripsi) dibatasi kepada Steven saja.

Untuk murid-murid NUS lainnya, anda dapat mendaftarkan sendiri sebuah akun VisuAlgo (OPT-IN).

Untuk dosen-dosen Ilmu Komputer di seluruh dunia yang telah menulis kepada Steven, sebuah akun VisuAlgo (alamat email (bukan-NUS), anda dapat menggunakan nama panggilan apapun, dan kata sandi terenkripsi) dibutuhkan untuk membedakan kredensial online anda dibandingkan dengan orang-orang lain di dunia. Akun anda akan dilacak seperti seorang murid NUS biasa diatas tetapi akun anda akan mempunya fitur-fiture spesifik untuk dosen-dosen Ilmu Komputer, yaitu kemampuan untuk melihat slide-slide tersembunyi yang berisi jawaban-jawaban (menarik) dari pertanyaan-pertanyaan yang dipresentasikan di slide-slide sebelumnya sebelum slide-slide tersembunyi tersebut. Anda juga dapat mengakses setingan Susah dari Kuis-Kuis Online VisuAlgo. Anda dapat dengan bebas menggunakan materi-materia untuk memperkaya kelas-kelas struktur-struktur data dan algoritma-algoritma anda. Catatan: Mungkin ada fitur-fitur khusus tambahan untuk dosen Ilmu Komputer di masa mendatang.

Untuk siapapun dengan akun VisuAlgo, anda dapat membuang akun anda sendiri bila anda tidak mau lagi diasosiasikan dengan tool VisuAlgo ini.