7    VisuAlgo.net / /maxflow Login Max Flow/Min Cut
Mode Eksplorasi ▿

>

>
pelan
cepat
go to beginning previous frame pause play next frame go to end

Maximum (Max) Flow is one of the problems in the family of problems involving flow in networks.


In Max Flow problem, we aim to find the maximum flow from a particular source vertex s to a particular sink vertex t in a directed weighted graph G.


There are several algorithms for finding the maximum flow including Ford-Fulkerson method, Edmonds-Karp algorithm, and Dinic's algorithm (there are others, but not included in this visualization yet).


The dual problem of Max Flow is Min Cut, i.e., by finding the max s-t flow of G, we also simultaneously find the min s-t cut of G, i.e., the set of edges with minimum weight that have to be removed from G so that there is no path from s to t in G.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
Please login if you are a repeated visitor or register for an (optional) free account first.

X Esc
Berikut PgDn

Max-Flow (or Min-Cut) problems arise in various applications, e.g.,

  1. Transportation-related problems (what is the best way to send goods/material from s (perhaps a factory) to t (perhaps a super-sink of all end-users)
  2. Network attacks problems (sabotage/destroy some edges to disconnect two important points s and t)
  3. (Bipartite) Matching and Assignment problems (that also has specialized algorithms, see Graph Matching visualization
  4. Sport teams prospects
  5. Image segmentation, etc...

Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Sebelum PgUp
Berikut PgDn

This visualization page will show the execution of a chosen Max Flow algorithm running on a flow (residual) graph.


To make the visualization of these flow graphs consistent, we enforce a graph drawing rule for this page whereby the source vertex s/sink vertex t is always vertex 0/V-1 and is always drawn on the leftmost/rightmost side of the visualization, respectively. Another visualization-specific constraint is that the edge capacities are integers between [1..99].


These visualization-specific constraints are not exist in the standard max flow problems.


Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Sebelum PgUp
Berikut PgDn

The input for a Max Flow algorithm is a flow graph (a directed weighted graph G = (V, E) where edge weight represent the capacity (the unit is problem-dependent, e.g., liters/second, person/hour, etc) of flow that can go through that edge) with two distinguished vertices: The source vertex s and the sink/target/destination vertex t.


In this visualization, these two additional inputs of s (usually vertex 0) and t (usually vertex V-1) are asked before the execution of the chosen Max Flow algorithm and can be customized by the user.

X Esc
Sebelum PgUp
Berikut PgDn

The output for a Max Flow algorithm is an assignment of flow f to each edge that satisfies two important constraints:

  1. Capacity constraints (flow on each edge (f(e)) is between 0 and its (unit) capacity (c(e)), i.e., 0 ≤ f(e) ≤ c(e)), and
  2. Equilibrium constraints (for every vertex except s and t, flow-in = flow-out)
so that the value of the flow (value(f) = ∑v: (s, v) ∈ E f(s,v)) is maximum.


In this visualization, we focus on showing the final max flow value and the final ST-min cut components at the end of each max flow algorithm execution, instead of the precise assignment of flow f to each edge, i.e., f(e) must be computed manually from the initial capacity c(e) (first frame of the animation) minus the final residual capacity of that edge e (last frame of the animation).

X Esc
Sebelum PgUp
Berikut PgDn

At the start of the three Max Flow algorithms discussed in this visualization (Ford-Fulkerson method, Edmonds-Karp algorithm, and Dinic's algorithm), the initial flow graph is converted into residual graph (with potential addition of back flow edges with initial capacity of zeroes).


The edges in the residual graph store the remaining capacities of those edges that can be used by future flow(s). At the beginning, these remaining capacities equal to the original capacities as specified in the input flow graph.


A Max Flow algorithm will send flows to use some (or all) of these available capacities, iteratively.


Once the remaining capacity of an edge reaches 0, that edge can no longer admit any more flow.

X Esc
Sebelum PgUp
Berikut PgDn

There are three different sources for specifying an input flow graph:

  1. Draw Graph: You can draw any directed weighted (weight ∈ [1..99]) graph as the input flow graph with vertex 0 as the default source vertex (the left side of the screen) and vertex V-1 as the default sink vertex (the right side of the screen),
  2. Modeling: Several graph problems can be reduced into a Max Flow problem. In this visualization, we have the modeling examples for the famous Maximum Cardinality Bipartite Matching (MCBM) problem, Rook Attack problem (currently disabled), and Baseball Elimination problem (currently disabled),
  3. Example Graphs: You can select from the list of our selected example flow graphs to get you started.
X Esc
Sebelum PgUp
Berikut PgDn

There are three different max flow algorithms in this visualization:

  1. The slow O(mf × E) Ford-Fulkerson method,
  2. The O(V × E^2) Edmonds-Karp algorithm, or
  3. The O(V^2 × E) Dinic's algorithm.
X Esc
Sebelum PgUp
Berikut PgDn

For the three Max Flow algorithms discussed in this visualization, successive flows are sent from the source vertex s to the sink vertex t via available augmenting paths (augmenting path is a path from s to t that goes through edges with positive weight residual capacity (c(e)-f(e)) left).


The three Max Flow algorithms in this visualization have different behavior on how they find augmenting paths.


However, all three Max Flow algorithms in this visualization stop when there is no more augmenting path possible and report the max flow value (and the assignment of flow on each edge in the flow graph).


Later we will discuss that this max flow value is also the min cut value of the flow graph (that famous Max-Flow/Min-Cut Theorem).

X Esc
Sebelum PgUp
Berikut PgDn
start with 0 flow
while there exists an augmenting path: // iterative algorithm
  find an augmenting path (for now, 'any' graph traversal will do)
  compute bottleneck capacity
  increase flow on the path by the bottleneck capacity
X Esc
Sebelum PgUp
Berikut PgDn

This famous theorem states that in a flow network, the maximum flow from s to t is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges that have to be removed to disconnect s from t.


In a typical Computer Science classes, the lecturer will usually spend some time to properly explain this theorem (explaining what is an st-cut, capacity of an st-cut, net flow across an st-cut equals to current flow f assignment that will never exceed the capacity of the cut, and finally that Max-Flow/Min-Cut Theorem). For this visualization, we just take this statement as it is.

X Esc
Sebelum PgUp
Berikut PgDn

Using the Max-Flow/Min-Cut Theorem, we can then prove that flow f is a maximum flow if and only if there is no (more) augmenting path remaining in the residual graph.


As this is what Ford-Fulkerson Method is doing, we can conclude the correctness of this Ford-Fulkerson Method, i.e., if Ford-Fulkerson Method terminates, then there is no augmenting path left and thus the resulting flow is maximum.

X Esc
Sebelum PgUp
Berikut PgDn

Ford-Fulkerson method always terminates if the capacities are integers.


This is because every iteration of Ford-Fulkerson method always finds a new augmenting path and each augmenting path must has bottleneck capacity at least 1 (due to that integer constraint). Therefore, each iteration increases the flow of at least one edge by at least 1, edging the Ford-Fulkerson closer to termination.


As the number of edges is finite (as well as the finite max capacity per edge), this guarantees the eventual termination of Ford-Fulkerson method when the max flow mf is reached and there is no more augmenting path left.


In the worst case, Ford-Fulkerson method runs for mf iterations, and each time it uses O(E) DFS. The rough overall runtime is thus O(mf × E).

X Esc
Sebelum PgUp
Berikut PgDn

Idea: What if we don't consider any augmenting paths but consider augmenting paths with the smallest number of edges involved first (so we don't put flow on more edges than necessary).


Implementation: We first ignore capacity of the edges first (assume all edges in the residual graph have weight 1), and we run O(E) BFS to find the shortest (in terms of # of edges used) augmenting path. Everything else is the same as the basic Ford-Fulkerson Method outlined earlier.


It can be proven that Edmonds-Karp will use at most O(VE) iterations thus it runs in at most in O(VE * E) = O(VE^2) time.

X Esc
Sebelum PgUp
Berikut PgDn

This is a stub.


Dinic's run in a faster time O(V^2 × E) due to the more efficient usage of BFS shortest path information.

X Esc
Sebelum PgUp
Berikut PgDn

We can constructively identify the edges in the Min-Cut after running any Max-Flow algorithm until it terminates.


Details later, this is a stub.

X Esc
Sebelum PgUp
Berikut PgDn

When you are presented with a Max Flow (or a Min Cut)-related problem, we do not have to reinvent the wheel every time.


You are allowed to use/modify our implementation code for Max Flow Algorithms (Edmonds-Karp/Dinic's): maxflow.cpp|py|java|ml

X Esc
Sebelum PgUp
Berikut PgDn
Selagi aksi dijalankan, tiap langkahnya akan dijelaskan pada panel status.
X Esc
Sebelum PgUp
Berikut PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Sebelum PgUp
Berikut PgDn
Kendalikan animasi dengan tombol kendali! Terdapat pula shortcut melalui keyboard:
Spasi: play/pause/replay
Panah kanan/kiri: maju ke depan/belakang
-/+: turunkan/tingkatkan kecepatan

X Esc
Sebelum PgUp
Berikut PgDn
Kembali ke 'Mode Eksplorasi' untuk memulai eksplorasi!

Harap diingat bahwa jika anda menemukan bug pada visualisasi ini atau bila anda ingin meminta fitur / visualisasi baru, jangan segan-segan untuk menghubungi pemimpin proyek ini: Dr Steven Halim melalui alamat emailnya: stevenhalim at gmail dot com.
X Esc
Sebelum PgUp

Gambar Grafik

Modeling

Contoh Graf

Hitung Aliran Maksimum

>

Pencocokan Bipartit

acak

kiri 1

kanan 1

semua 1

CP3 4.24*

CP3 4.26.1 (s-lim)

CP3 4.26.2 (t-lim)

CP3 4.26.3

Ford Fulkerson Killer

Dinic Showcase

s = , t =

Lakukan

Ford Fulkerson

Edmonds Karp

Dinic

Tentang Tim Syarat Guna

Tentang

VisuAlgo digagas pada tahun 2011 oleh Dr Steven Halim sebagai alat untuk membantu murid-muridnya mengerti struktur data dan algoritma dengan memampukan mereka untuk mempelajari dasar-dasar struktur data dan algoritma secara otodidak dan dengan kecepatan mereka sendiri.


VisuAlgo mempunya banyak algoritma-algoritma tingkat lanjut yang dibahas didalam buku Dr Steven Halim ('Competitive Programming', yang ditulis bersama adiknya Dr Felix Halim) dan lebih lagi. Hari ini, beberapa dari visualisasi/animasi algoritma-algoritma tingkat lanjut ini hanya ditemukan di VisuAlgo.


Meskipun pada khususnya didesain untuk murid-murid National University of Singapore (NUS) yang mengambil berbagai kelas-kelas struktur data dan algoritma (contoh: CS1010, CS1020, CS2010, CS2020, CS3230, dan CS3233), sebagai pendukung pembelajaran online, kami berharap bahwa orang-orang di berbagai belahan dunia menemukan visualisasi-visualisasi di website ini berguna bagi mereka juga.


VisuAlgo tidak didesain untuk layar sentuh kecil (seperti smartphones) dari awalnya karena kami harus membuat banyak visualisasi-visualisasi algoritma kompleks yang membutuhkan banyak pixels dan gestur klik-dan-tarik untuk interaksinya. Resolusi layar minimum untuk pengalaman pengguna yang lumayan adalah 1024x768 dan hanya halaman utama VisuAlgo yang secara relatif lebih ramah dengan layar kecil.


VisuAlgo adalah proyek yang sedang terus berlangsung dan visualisasi-visualisasi yang lebih kompleks sedang dibuat.


Perkembangan yang paling menarik adalah pembuatan pertanyaan otomatis (sistem kuis online) yang bisa dipakai oleh murid-murid untuk menguji pengetahuan mereka tentang dasar-dasar struktur data dan algoritma. Pertanyaan-pertanyaan dibuat secara acak dengan semacam rumus dan jawaban-jawaban murid-murid dinilai secara instan setelah dikirim ke server penilai kami. Sistem kuis online ini, saat sudah diadopsi oleh banyak dosen Ilmu Komputer diseluruh dunia, seharusnya bisa menghapuskan pertanyaan-pertanyaan dasar tentang struktur data dan algoritma dari ujian-ujian di banyak Universitas. Dengan memberikan bobot kecil (tapi tidak kosong) supaya murid-murid mengerjakan kuis online ini, seorang dosen Ilmu Komputer dapat dengan signifikan meningkatkan penguasaan materi dari murid-muridnya tentang pertanyaan-pertanyaan dasar ini karena murid-murid mempunyai kesempatan untuk menjawab pertanyaan-pertanyaan ini yang bisa dinilai secara instan sebelum mereka mengambil kuis online yang resmi. Mode latihan saat ini mempunyai pertanyaan-pertanyaan untuk 12 modul visualisasi. Kami akan segera menambahkan pertanyaan-pertanyaan untuk 8 modul visualisasi lainnya sehingga setiap every modul visualisasi di VisuAlgo mempunyai komponen kuis online.


Cabang pengembangan aktif lainnya adalah sub-proyek penerjemahan dari VisuAlgo. Kami mau menyiapkan basis data kosa kata Ilmu Komputer dalam bahasa Inggris yang digunakan di sistem VisuAlgo. Ini adalah pekerjaan besar yang membutuhkan crowdsourcing. Saat sistem tersebut siap, kami akan mengundang beberapa dari anda untuk berkontribusi, terutama bila bahasa Inggris bukan bahasa ibu anda. Saat ini, kami juga telah menulis catatan-catatan publik tentang VisuAlgo dalam berbagai bahasa:
zh, id, kr, vn, th.

Tim

Pemimpin & Penasihat Proyek (Jul 2011-sekarang)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Murid-Murid S1 Peniliti 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Murid-Murid Proyek Tahun Terakhir/UROP 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Murid-Murid Proyek Tahun Terakhir/UROP 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Murid-Murid S1 Peniliti 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Murid-Murid Proyek Tahun Terakhir/UROP 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Murid-Murid Proyek Tahun Terakhir/UROP 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Ucapan Terima Kasih
Proyek ini dimungkinkan karena Hibah Pengembangan Pengajaran dari NUS Centre for Development of Teaching and Learning (CDTL).

Syarat Guna

VisuAlgo bebas biaya untuk komunitas Ilmu Komputer di dunia. Jika anda menyukai VisuAlgo, satu-satunya pembayaran yang kami minta dari anda adalah agar anda menceritakan keberadaan VisuAlgo kepada murid-murid/dosen-dosen Ilmu Komputer yang anda tahu =) lewat Facebook, Twitter, situs mata kuliah, ulasan di blog, email, dsb.


Jika anda adalah murid/dosen struktur data dan algoritma, anda diijinkan untuk menggunakan situs ini secara langsung di kelas-kelas anda. Jika anda mengambil screen shots (video-video) dari situs ini, anda dapat menggunakan screen shots (video-video) tersebut ditempat lain asalkan anda menyebut URL dari situs ini (http://visualgo.net) dan/atau daftar publikasi dibawah ini sebagai referensi. Tetapi, anda TIDAK diijinkan untuk mengunduh berkas-berkas VisuAlgo (sisi-klien) dan memasangnya di situs anda sendiri karena itu dikategorikan sebagai plagiat. Saat ini, kami TIDAK mengijinkan orang lain untuk membuat cabang/varian dari proyek VisuAlgo ini. Menggunakan kopi offline (sisi-klien) dari VisuAlgo untuk kepentingan pribadi diijinkan.


Ingat bahwa komponen kuis online dari VisuAlgo secara natur membutuhkan sisi-server dan tidak bisa dengan mudah disimpan di komputer lokal. Saat ini, publik hanya bisa menggunkaan 'mode latihan' untuk mengakses sistem kuis online. Saat ini, 'mode ujian' adalah sistem untuk mengakses pertanyaan-pertanyaan acak ini yang digunakan untuk ujian resmi di NUS. Dosen-dosen Ilmu Komputer yang lain harus menghubungi Steven jika anda mau mencoba 'mode ujian' tersebut.


Dafatar Publikasi


Karya ini telah dipresentasikan singkat pada CLI Workshop sewaktu ACM ICPC World Finals 2012 (Poland, Warsaw) dan pada IOI Conference di IOI 2012 (Sirmione-Montichiari, Italy). Anda bisa mengklik link ini untuk membaca makalah kami tahun 2012 tentang sistem ini (yang belum disebut sebagai VisuAlgo pada tahun 2012 tersebut).


Karya ini dibuat denbgan bantuan bekas murid-murid saya. Laporan-laporan proyek yang cukup mutakhir bisa dibaca disini: Erin, Wang Zi, Rose, Ivan.


Laporan Bug atau Meminta Fitur Baru


VisuAlgo bukanlah proyek yang sudah selesai. Dr Steven Halim masih aktif dalam mengembangkan VisuAlgo. Jika anda adalah pengguna VisuAlgo dan menemukan bug di halaman visualisasi/sistem kuis online atau jika anda mau meminta fitur baru, silahkan hubungi Dr Steven Halim. Alamat emailnya adalah gabungan dari namanya dan tambahkan gmail titik com.