7    VisuAlgo.net / /matching Login Pencocokan Graf (Bipartit Tak Berbobot) (Unweighted General) Graph Matching
Mode Eksplorasi ▿

>

>
pelan
cepat
go to beginning previous frame pause play next frame go to end

A Matching in a graph G = (V, E) is a subset M of E edges in G such that no two of which meet at a common vertex.


Maximum Cardinality Matching (MCM) problem is a Graph Matching problem where we seek a matching M that contains the largest possible number of edges. A possible variant is Perfect Matching where all V vertices are matched, i.e., the cardinality of M is V/2.


A Bipartite Graph is a graph whose vertices can be partitioned into two disjoint sets U and V such that every edge can only connect a vertex in U to a vertex in V.


Maximum Cardinality Bipartite Matching (MCBM) problem is the MCM problem in a Bipartite Graph, which is a lot easier than MCM problem in a General Graph.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
Please login if you are a repeated visitor or register for an (optional) free account first.

X Esc
Berikut PgDn

Visualisasi ini saat ini terbatas pada graf-graf tidak berbobot saja. Sehingga, kita saat ini tidak mendukung varian-varian masalah Pencocokan Graf variants yang berhubungan dengan graf-graf berbobot...


Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Sebelum PgUp
Berikut PgDn

To switch between the unweighted MCBM (default, as it is much more popular) and unweighted MCM mode, click the respective header.


Here is an example of MCM mode. In MCM mode, one can draw a General, not necessarily Bipartite graphs. However, the graphs are unweighted (all edges have uniform weight 1).


The available algorithms are different in the two modes.


Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Sebelum PgUp
Berikut PgDn

You can view the visualisation here!


For Bipartite Graph visualization, we will re-layout the vertices of the graph so that the two disjoint sets (U and V) are clearly visible as Left (U) and Right (V) sets. For General Graph, we do not relayout the vertices.


Initially, edges have grey color. Matched edges will have black color. Free/Matched edges along an augmenting path will have Orange/Light Blue colors, respectively.

X Esc
Sebelum PgUp
Berikut PgDn

Ada tiga sumber berbeda untuk menspesifikasikan graf masukan:

  1. Gambar Graf: Anda dapat menggambar graf tak-berarah dan tak-berbobot apapun (catat bahwa dalam mode MCBM, graf masukan yang digambar akan di tata ulang menjadi tata graf Bipartit yang baik during animasi algoritma),
  2. Modeling: Banyak problem graf yang dapat direduksi menjadi masalah MCBM. Di visualisasi ini, kita telah menyediakan contoh-contoh modeling untuk masalah Rook Attack yang terkenal dan masalah MCBM standar (juga valid dalam mode MCM).
  3. Contoh-Contoh: Anda dapat memilih dari daftar graf-graf contoh yang kami sediakan untuk memulai. Daftar contoh-contoh sedikit berbeda di dua mode MCBM vs MCM.
X Esc
Sebelum PgUp
Berikut PgDn

There are several Max Cardinality Bipartite Matching (MCBM) algorithms in this visualization, plus one more in Max Flow visualization:

  1. O(VE) Augmenting Path Algorithm (without greedy pre-processing),
  2. O(√(V)E) Dinic's Max Flow Algorithm, see Max Flow visualization, select Modeling → Bipartite Matching → All 1, then use Dinic's algorithm.
  3. O(√(V)E) Hopcroft-Karp Algorithm,
  4. O(kE) Augmenting Path Algorithm++ (with randomized greedy pre-processing),

PS: Although possible, we will likely not use O(V3) Edmonds' Matching Algorithm if the input is guaranteed to be a Bipartite Graph.

X Esc
Sebelum PgUp
Berikut PgDn

Augmenting Path is a path that starts from a free (unmatched) vertex u in graph G (note that G does not necessarily has to be a bipartite graph), alternates through unmatched, match, ..., unmatched edges in G, until it ends at another free vertex v. If we flip the edge status along that augmenting path, we will increase the number of edges in the matching set M by 1 and eliminates this augmenting path.


In 1957, Claude Berge proposes the following lemma: A matching M in graph G is maximum iff there is no more augmenting path in G.


The Augmenting Path Algorithm is a simple O(V*(V+E)) = O(V2 + VE) = O(VE) implementation of that lemma (on Bipartite Graph): Find and then eliminate augmenting paths in Bipartite Graph G. Click Augmenting Path Algorithm Demo to visualize this algorithm on the currently displayed random Bipartite Graph.

X Esc
Sebelum PgUp
Berikut PgDn
vi match, vis; // global variables

int Aug(int L) { // return 1 if ∃ an augmenting path from L
if (vis[L]) return 0; // return 0 otherwise
vis[L] = 1;
for (auto& v : AL[L]) {
int R = v.first;
if ((match[R] == -1) || Aug(match[R])) {
match[R] = L;
return 1; // found 1 matching
}
}
return 0; // no matching
}
X Esc
Sebelum PgUp
Berikut PgDn
// in int main(), build the bipartite graph
// use directed edges from left set (of size VLeft) to right set
int MCBM = 0;
match.assign(V, -1);
for (int L = 0; L < VLeft; ++L) {
vis.assign(VLeft, 0);
MCBM += Aug(L); // find augmenting path starting from L
}
printf("Found %d matchings\n", MCBM);

Please see the full implementation at Competitive Programming book repository: mcbm.cpp|py|java|ml.

X Esc
Sebelum PgUp
Berikut PgDn

The MCBM problem can be modeled as a Max Flow problem. Go to Max Flow visualization page and see the flow graph modeling of MCBM problem (select Modeling → Bipartite Matching → all 1).


If we use one of the fastest Max Flow algorithm, i.e., Dinic's algorithm on this flow graph, we can find Max Flow = MCBM in O(√(V)E) time — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1000..1500] in a typical 1s allowed runtime in many programming competitions.

X Esc
Sebelum PgUp
Berikut PgDn

If we are given a Complete Bipartite Graph KN/2,N/2, i.e.,
V = N/2+N/2 = N and E = N/2×N/2 = N2/4 ≈ N2, then
the Augmenting Path Algorithm discussed earlier will run in O(VE) = O(N×N2) = O(N3).


This is only OK for V ∈ [400..500] in a typical 1s allowed runtime in many programming competitions.


Try executing the standard Augmenting Path Algorithm on this Extreme Test Case, which is an almost complete K5,5 Bipartite Graph.

X Esc
Sebelum PgUp
Berikut PgDn

The key idea of Hopcroft-Karp (HK) Algorithm (invented in 1973) is identical to Dinic's Max Flow Algorithm discussed earlier, i.e., prioritize shortest augmenting paths (in terms of number of edges used) first. That's it, augmenting paths with 1 edge are processed first before longer augmenting paths with 3 edges, 5 edges, 7 edges, etc (the length always increase by 2 due to the nature of augmenting path in a Bipartite Graph).


Hopcroft-Karp Algorithm has time complexity of O(√(V)E) — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1000..1500] in a typical 1s allowed runtime in many programming competitions — the similar range as with running Dinic's algorithm on Bipartite Matching flow graph.


Try HK Algorithm on the same Extreme Test Case earlier. You will notice that HK Algorithm can find the MCBM in a much faster time than the previous standard O(VE) Augmenting Path Algorithm.

X Esc
Sebelum PgUp
Berikut PgDn

However, we can actually make the easy-to-code Augmenting Path Algorithm discussed earlier to avoid its worst case O(VE) behavior by doing O(V+E) randomized (to avoid adversary test case) greedy pre-processing before running the actual algorithm.


This O(V+E) additional pre-processing step is simple: For every vertex on the left set, match it with a randomly chosen unmatched neighbouring vertex on the right set. This way, we eliminates many trivial (one-edge) Augmenting Paths that consist of a free vertex u, an unmatched edge (u, v), and a free vertex v.


Try Augmenting Path Algorithm++ on the same Extreme Test Case earlier. Notice that the pre-processing step already eliminates many trivial 1-edge augmenting paths, making the actual Augmenting Path Algorithm only need to do little amount of additional work.

X Esc
Sebelum PgUp
Berikut PgDn

Quite often, on randomly generated Bipartite Graph, the randomized greedy pre-processing step has cleared most of the matchings.


However, we can construct test case like: Examples: Randomized Greedy Processing Killer to make randomization as ineffective as possible. For every group of 4 vertices, there are 2 matchings. Random greedy processing has 50% chance of making mistake per group. Try this Hard Test Case case to see for yourself.


The worst case time complexity is no longer O(VE) but now O(kE) where k is a small integer, much smaller than V, k can be as small as 0 and is at most V/2. In our empirical experiments, we estimate k to be "about √(V)" too. This version of Augmenting Path Algorithm++ also allows us to solve MCBM problem with V ∈ [1000..1500] in a typical 1s allowed runtime in many programming competitions.

X Esc
Sebelum PgUp
Berikut PgDn

There are two Max Cardinality Matching (MCM) algorithms in this visualization:

  1. O(V^3) Edmonds's Matching algorithm (without greedy pre-processing),
  2. O(V^3) Edmonds's Matching algorithm (with greedy pre-processing),
X Esc
Sebelum PgUp
Berikut PgDn

In General Graph, we may have Odd-Length cycle. Augmenting Path is not well defined in such graph, hence we cannot directly implement Claude Berge's lemma like what we did with Bipartite Graph.


Jack Edmonds call a path that starts from a free vertex u, alternates between free, matched, ..., free edges, and returns to the same free vertex u as Blossom. This situation is only possible if we have Odd-Length cycle, i.e., non-Bipartite Graph. Edmonds then proposed Blossom shrinking/contraction and expansion algorithm to solve this issue, details verbally.


This algorithm can be implemented in O(V^3).

X Esc
Sebelum PgUp
Berikut PgDn

As with the Augmenting Path Algorithm++ for the MCBM problem, we can also do randomized greedy pre-processing step to eliminate as many 'trivial matchings' as possible upfront. This reduces the amount of work of Edmonds' Matching Algorithm, thus resulting in a faster time complexity — analysis TBA.

X Esc
Sebelum PgUp
Berikut PgDn

Kami belum menambahkan visualisasi-visualisasi untuk varian berbobot dari masalah MCBM dan MCM (untuk pekerjaan dimasa mendatang).

X Esc
Sebelum PgUp
Berikut PgDn

You are allowed to use/modify our implementation code for Augmenting Path Algorithm++:
mcbm.cpp
mcbm.java
mcbm.py
mcbm.ml

X Esc
Sebelum PgUp
Berikut PgDn
Selagi aksi dijalankan, tiap langkahnya akan dijelaskan pada panel status.
X Esc
Sebelum PgUp
Berikut PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Sebelum PgUp
Berikut PgDn
Kendalikan animasi dengan tombol kendali! Terdapat pula shortcut melalui keyboard:
Spasi: play/pause/replay
Panah kanan/kiri: maju ke depan/belakang
-/+: turunkan/tingkatkan kecepatan

X Esc
Sebelum PgUp
Berikut PgDn
Kembali ke 'Mode Eksplorasi' untuk memulai eksplorasi!

Harap diingat bahwa jika anda menemukan bug pada visualisasi ini atau bila anda ingin meminta fitur / visualisasi baru, jangan segan-segan untuk menghubungi pemimpin proyek ini: Dr Steven Halim melalui alamat emailnya: stevenhalim at gmail dot com.
X Esc
Sebelum PgUp

Gambar Grafik

Modeling

Examples

Augmenting Path

>

Rook Attack

GO

Generate Random Bipartite Graph

Undirected Max Flow Killer

House of Cards

CS4234 Tutorial 3

F-mod

Randomized Greedy Processing Killer

K5,5

K5,5 (Almost)

Standard

Dengan Pemasangan Acak sebelum diproses

Hopcroft Karp

Edmonds Blossom

Edmonds Blossom + Greedy

Tentang Tim Syarat Guna

Tentang

VisuAlgo digagas pada tahun 2011 oleh Dr Steven Halim sebagai alat untuk membantu murid-muridnya mengerti struktur data dan algoritma dengan memampukan mereka untuk mempelajari dasar-dasar struktur data dan algoritma secara otodidak dan dengan kecepatan mereka sendiri.


VisuAlgo mempunya banyak algoritma-algoritma tingkat lanjut yang dibahas didalam buku Dr Steven Halim ('Competitive Programming', yang ditulis bersama adiknya Dr Felix Halim) dan lebih lagi. Hari ini, beberapa dari visualisasi/animasi algoritma-algoritma tingkat lanjut ini hanya ditemukan di VisuAlgo.


Meskipun pada khususnya didesain untuk murid-murid National University of Singapore (NUS) yang mengambil berbagai kelas-kelas struktur data dan algoritma (contoh: CS1010, CS1020, CS2010, CS2020, CS3230, dan CS3233), sebagai pendukung pembelajaran online, kami berharap bahwa orang-orang di berbagai belahan dunia menemukan visualisasi-visualisasi di website ini berguna bagi mereka juga.


VisuAlgo tidak didesain untuk layar sentuh kecil (seperti smartphones) dari awalnya karena kami harus membuat banyak visualisasi-visualisasi algoritma kompleks yang membutuhkan banyak pixels dan gestur klik-dan-tarik untuk interaksinya. Resolusi layar minimum untuk pengalaman pengguna yang lumayan adalah 1024x768 dan hanya halaman utama VisuAlgo yang secara relatif lebih ramah dengan layar kecil.


VisuAlgo adalah proyek yang sedang terus berlangsung dan visualisasi-visualisasi yang lebih kompleks sedang dibuat.


Perkembangan yang paling menarik adalah pembuatan pertanyaan otomatis (sistem kuis online) yang bisa dipakai oleh murid-murid untuk menguji pengetahuan mereka tentang dasar-dasar struktur data dan algoritma. Pertanyaan-pertanyaan dibuat secara acak dengan semacam rumus dan jawaban-jawaban murid-murid dinilai secara instan setelah dikirim ke server penilai kami. Sistem kuis online ini, saat sudah diadopsi oleh banyak dosen Ilmu Komputer diseluruh dunia, seharusnya bisa menghapuskan pertanyaan-pertanyaan dasar tentang struktur data dan algoritma dari ujian-ujian di banyak Universitas. Dengan memberikan bobot kecil (tapi tidak kosong) supaya murid-murid mengerjakan kuis online ini, seorang dosen Ilmu Komputer dapat dengan signifikan meningkatkan penguasaan materi dari murid-muridnya tentang pertanyaan-pertanyaan dasar ini karena murid-murid mempunyai kesempatan untuk menjawab pertanyaan-pertanyaan ini yang bisa dinilai secara instan sebelum mereka mengambil kuis online yang resmi. Mode latihan saat ini mempunyai pertanyaan-pertanyaan untuk 12 modul visualisasi. Kami akan segera menambahkan pertanyaan-pertanyaan untuk 8 modul visualisasi lainnya sehingga setiap every modul visualisasi di VisuAlgo mempunyai komponen kuis online.


Cabang pengembangan aktif lainnya adalah sub-proyek penerjemahan dari VisuAlgo. Kami mau menyiapkan basis data kosa kata Ilmu Komputer dalam bahasa Inggris yang digunakan di sistem VisuAlgo. Ini adalah pekerjaan besar yang membutuhkan crowdsourcing. Saat sistem tersebut siap, kami akan mengundang beberapa dari anda untuk berkontribusi, terutama bila bahasa Inggris bukan bahasa ibu anda. Saat ini, kami juga telah menulis catatan-catatan publik tentang VisuAlgo dalam berbagai bahasa:
zh, id, kr, vn, th.

Tim

Pemimpin & Penasihat Proyek (Jul 2011-sekarang)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Murid-Murid S1 Peniliti 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Murid-Murid Proyek Tahun Terakhir/UROP 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Murid-Murid Proyek Tahun Terakhir/UROP 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Murid-Murid S1 Peniliti 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Murid-Murid Proyek Tahun Terakhir/UROP 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Murid-Murid Proyek Tahun Terakhir/UROP 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Ucapan Terima Kasih
Proyek ini dimungkinkan karena Hibah Pengembangan Pengajaran dari NUS Centre for Development of Teaching and Learning (CDTL).

Syarat Guna

VisuAlgo bebas biaya untuk komunitas Ilmu Komputer di dunia. Jika anda menyukai VisuAlgo, satu-satunya pembayaran yang kami minta dari anda adalah agar anda menceritakan keberadaan VisuAlgo kepada murid-murid/dosen-dosen Ilmu Komputer yang anda tahu =) lewat Facebook, Twitter, situs mata kuliah, ulasan di blog, email, dsb.


Jika anda adalah murid/dosen struktur data dan algoritma, anda diijinkan untuk menggunakan situs ini secara langsung di kelas-kelas anda. Jika anda mengambil screen shots (video-video) dari situs ini, anda dapat menggunakan screen shots (video-video) tersebut ditempat lain asalkan anda menyebut URL dari situs ini (http://visualgo.net) dan/atau daftar publikasi dibawah ini sebagai referensi. Tetapi, anda TIDAK diijinkan untuk mengunduh berkas-berkas VisuAlgo (sisi-klien) dan memasangnya di situs anda sendiri karena itu dikategorikan sebagai plagiat. Saat ini, kami TIDAK mengijinkan orang lain untuk membuat cabang/varian dari proyek VisuAlgo ini. Menggunakan kopi offline (sisi-klien) dari VisuAlgo untuk kepentingan pribadi diijinkan.


Ingat bahwa komponen kuis online dari VisuAlgo secara natur membutuhkan sisi-server dan tidak bisa dengan mudah disimpan di komputer lokal. Saat ini, publik hanya bisa menggunkaan 'mode latihan' untuk mengakses sistem kuis online. Saat ini, 'mode ujian' adalah sistem untuk mengakses pertanyaan-pertanyaan acak ini yang digunakan untuk ujian resmi di NUS. Dosen-dosen Ilmu Komputer yang lain harus menghubungi Steven jika anda mau mencoba 'mode ujian' tersebut.


Dafatar Publikasi


Karya ini telah dipresentasikan singkat pada CLI Workshop sewaktu ACM ICPC World Finals 2012 (Poland, Warsaw) dan pada IOI Conference di IOI 2012 (Sirmione-Montichiari, Italy). Anda bisa mengklik link ini untuk membaca makalah kami tahun 2012 tentang sistem ini (yang belum disebut sebagai VisuAlgo pada tahun 2012 tersebut).


Karya ini dibuat denbgan bantuan bekas murid-murid saya. Laporan-laporan proyek yang cukup mutakhir bisa dibaca disini: Erin, Wang Zi, Rose, Ivan.


Laporan Bug atau Meminta Fitur Baru


VisuAlgo bukanlah proyek yang sudah selesai. Dr Steven Halim masih aktif dalam mengembangkan VisuAlgo. Jika anda adalah pengguna VisuAlgo dan menemukan bug di halaman visualisasi/sistem kuis online atau jika anda mau meminta fitur baru, silahkan hubungi Dr Steven Halim. Alamat emailnya adalah gabungan dari namanya dan tambahkan gmail titik com.