7    VisuAlgo.net / /matching Login (Unweighted Bipartite) Graph Matching (Unweighted General) Graph Matching
Erkundungsmodus

>

>
langsam
schnell
go to beginning previous frame pause play next frame go to end

A Matching in a graph G = (V, E) is a subset M of E edges in G such that no two of which meet at a common vertex.


Maximum Cardinality Matching (MCM) problem is a Graph Matching problem where we seek a matching M that contains the largest possible number of edges. A possible variant is Perfect Matching where all V vertices are matched, i.e. the cardinality of M is V/2.


A Bipartite Graph is a graph whose vertices can be partitioned into two disjoint sets X and Y such that every edge can only connect a vertex in X to a vertex in Y.


Maximum Cardinality Bipartite Matching (MCBM) problem is the MCM problem in a Bipartite Graph, which is a lot easier than MCM problem in a General Graph.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
Please login if you are a repeated visitor or register for an (optional) free account first.

X Esc
Weiter
PgDn

This visualization is currently limited to unweighted graphs only. Thus, we currently do not support Graph Matching problem variants involving weighted graphs...


Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Zurück
PgUp
Weiter
PgDn

To switch between the unweighted MCBM (default, as it is much more popular) and unweighted MCM mode, click the respective header.


Here is an example of MCM mode. In MCM mode, one can draw a General, not necessarily Bipartite graphs. However, the graphs are unweighted (all edges have uniform weight 1).


The available algorithms are different in the two modes.


Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Zurück
PgUp
Weiter
PgDn

You can view the visualisation here!


For Bipartite Graph visualization, we will re-layout the vertices of the graph so that the two disjoint sets are clearly visible as Left and Right sets. For General Graph, we do not relayout the vertices.


Initially, edges have grey color. Matched edges will have black color. Free/Matched edges along an augmenting path will have Orange/Light Blue colors, respectively.

X Esc
Zurück
PgUp
Weiter
PgDn

There are three different sources for specifying an input graph:

  1. Draw Graph: You can draw any undirected unweighted graph as the input graph (note that in MCBM mode, the drawn input graph will be relayout into a nice Bipartite graph layout during algorithm animation),
  2. Modeling: A lot of graph problems can be reduced into an MCBM problem. In this visualization, we have the modeling examples for the famous Rook Attack problem (currently disabled) and standard MCBM problem (also valid in MCM mode).
  3. Examples: You can select from the list of our example graphs to get you started. The list of examples are slightly different in the two MCBM vs MCM modes.
X Esc
Zurück
PgUp
Weiter
PgDn

There are several Max Cardinality Bipartite Matching (MCBM) algorithms in this visualization, plus one more in Max Flow visualization:

  1. O(VE) Augmenting Path Algorithm (without greedy pre-processing),
  2. O(√(V)E) Dinic's Max Flow Algorithm, see Max Flow visualization, select Modeling → Bipartite Matching → All 1, then use Dinic's algorithm.
  3. O(√(V)E) Hopcroft Karp's Algorithm,
  4. O(kE) Augmenting Path Algorithm++ (with randomized greedy pre-processing),

PS: Although possible, we will likely not use O(V3) Edmonds's Matching Algorithm if the input is guaranteed to be a Bipartite Graph.

X Esc
Zurück
PgUp
Weiter
PgDn

Augmenting Path is a path that starts from a free (unmatched) vertex u in graph G, alternates through unmatched, match, ..., unmatched edges in G, until it ends at another free vertex v. If we flip the edge status along that augmenting path, we will increase the number of edges in the matching set M by 1 and eliminates this augmenting path.


In 1957, Claude Berge proposes the following lemma: A matching M in graph G is maximum iff there is no more augmenting path in G.


The Augmenting Path Algorithm is a simple O(V*(V+E)) = O(V2 + VE) = O(VE) implementation of that lemma (on Bipartite Graph): Find and then eliminate augmenting paths in Bipartite Graph G. Click Augmenting Path Algorithm Demo to visualize this algorithm on the currently displayed random Bipartite Graph.

X Esc
Zurück
PgUp
Weiter
PgDn
vi match, vis; // global variables

int Aug(int L) { // return 1 if ∃ an augmenting path from L
if (vis[L]) return 0; // return 0 otherwise
vis[L] = 1;
for (auto &v : AL[L]) {
int R = v.first;
if (match[R] == -1 || Aug(match[R])) {
match[R] = L;
return 1; // found 1 matching
} }
return 0; // no matching
}
X Esc
Zurück
PgUp
Weiter
PgDn
// in int main(), build the bipartite graph
// use directed edges from left set (of size VLeft) to right set
int MCBM = 0;
match.assign(V, -1);
for (int L = 0; L < VLeft; L++) {
vis.assign(VLeft, 0);
MCBM += Aug(L); // find augmenting path starting from L
}
printf("Found %d matchings\n", MCBM);

You can also download ch4_09_mcbm.cpp/java from Competitive Programming 3 companion website.

X Esc
Zurück
PgUp
Weiter
PgDn

The MCBM problem can be modeled as a Max Flow problem. Go to Max Flow visualization page and see the flow graph modeling of MCBM problem (select Modeling → Bipartite Matching → all 1).


If we use one of the fastest Max Flow algorithm, i.e. Dinic's algorithm on this flow graph, we can find Max Flow = MCBM in O(√(V)E) time — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1 000..1 500].

X Esc
Zurück
PgUp
Weiter
PgDn

If we are given a Complete Bipartite Graph KN/2,N/2, i.e.
V = N/2+N/2 = N and E = N/2×N/2 = N2/4 ≈ N2, then
the Augmenting Path Algorithm discussed earlier will run in O(VE) = O(N×N2) = O(N3).


This is only OK for V ∈ [400..500].


Try executing the standard Augmenting Path Algorithm on this Extreme Test Case, which is an almost complete K5,5 Bipartite Graph.

X Esc
Zurück
PgUp
Weiter
PgDn

The key idea of Hopcroft Karp's (HK) Algorithm (invented in 1973) is identical to Dinic's Max Flow Algorithm discussed earlier, i.e. prioritize shortest augmenting paths (in terms of number of edges used) first. That's it, augmenting paths with 1 edge are processed first before longer augmenting paths with 3 edges, 5 edges, 7 edges, etc (the length always increase by 2 due to the nature of augmenting path in a Bipartite Graph).


Hopcroft Karp's Algorithm has time complexity of O(√(V)E) — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1 000..1 500].


Try HK Algorithm on the same Extreme Test Case earlier. You will notice that HK Algorithm can find the MCBM in a much faster time than the previous standard O(VE) Augmenting Path Algorithm.

X Esc
Zurück
PgUp
Weiter
PgDn

However, we can actually make the easy-to-code Augmenting Path Algorithm discussed earlier to avoid its worst case O(VE) behavior by doing O(V+E) randomized (to avoid adversary test case) greedy pre-processing before running the actual algorithm.


This O(V+E) additional pre-processing step is simple: For every vertex on the left set, match it with a randomly chosen unmatched neighbouring vertex on the right set. This way, we eliminates many trivial (one-edge) Augmenting Paths that consist of a free vertex u, an unmatched edge (u, v), and a free vertex v.


Try Augmenting Path Algorithm++ on the same Extreme Test Case earlier. Notice that the pre-processing step already eliminates many trivial 1-edge augmenting paths, making the actual Augmenting Path Algorithm only need to do little amount of additional work.

X Esc
Zurück
PgUp
Weiter
PgDn

Quite often, on randomly generated Bipartite Graph, the randomized greedy pre-processing step has cleared most of the matchings.


However, we can construct test case like: Examples: Randomized Greedy Processing Killer to make randomization as ineffective as possible. For every group of 4 vertices, there are 2 matchings. Random greedy processing has 50% chance of making mistake per group. Try this Hard Test Case case to see for yourself.


The worst case time complexity is no longer O(VE) but now O(kE) where k is a small integer, much smaller than V, k can be as small as 0 and is at most V/2. In our experiments, we estimate k to be "about √(V)" too. This version of Augmenting Path Algorithm++ allows us to solve MCBM problem with V ∈ [1 000..1 500] too.

X Esc
Zurück
PgUp
Weiter
PgDn

There are two Max Cardinality Matching (MCM) algorithms in this visualization:

  1. O(V^3) Edmonds's Matching algorithm (without greedy pre-processing),
  2. O(V^3) Edmonds's Matching algorithm (with greedy pre-processing),
X Esc
Zurück
PgUp
Weiter
PgDn

In General Graph, we may have Odd-Length cycle. Augmenting Path is not well defined in such graph, hence we cannot directly implement Claude Berge's lemma like what we did with Bipartite Graph.


Jack Edmonds call a path that starts from a free vertex u, alternates between free, matched, ..., free edges, and returns to the same free vertex u as Blossom. This situation is only possible if we have Odd-Length cycle, i.e. non-Bipartite Graph. Edmonds then proposed Blossom shrinking/contraction and expansion algorithm to solve this issue, details verbally.


This algorithm can be implemented in O(V^3).

X Esc
Zurück
PgUp
Weiter
PgDn

As with the Augmenting Path Algorithm++ for the MCBM problem, we can also do randomized greedy pre-processing step to eliminate as many 'trivial matchings' as possible upfront. This reduces the amount of work of Edmonds's Matching Algorithm, thus resulting in a faster time complexity — analysis TBA.

X Esc
Zurück
PgUp
Weiter
PgDn

We have not added visualizations for weighted variant of MCBM and MCM problems (future work).

X Esc
Zurück
PgUp
Weiter
PgDn

You are allowed to use/modify our implementation code for Augmenting Path Algorithm++:
mcbm.cpp
mcbm.java
mcbm.py
mcbm.ml

X Esc
Zurück
PgUp
Weiter
PgDn
Alle Schritte werden in der Status Anzeige erklärt während sie passieren
X Esc
Zurück
PgUp
Weiter
PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Zurück
PgUp
Weiter
PgDn
Kontrolliere die Animation mit Hilfe deiner Tastatur! Die Tasten sind:

Leertaste: start/stop/wiederholen
Pfeiltaste rechts/links: ein Schritt vor oder zurück
-/+: senke/erhöhe die Geschwindigkeit
X Esc
Zurück
PgUp
Weiter
PgDn
Kehre zum 'Exploration Mode' zurück und beginne zu Erforschen
X Esc
Zurück
PgUp

Graph zeichnen

Modeling

Examples

Augmenting Path

>

Rook Attack

GO

Generate Random Bipartite Graph

Undirected Max Flow Killer

House of Cards

CS4234 Tutorial 3

F-mod

Randomized Greedy Processing Killer

K5,5

K5,5 (Almost)

Standard

With Randomized Greedy Preprocessing

Hopcroft Karp

Edmonds Blossom

Edmonds Blossom + Greedy

Über
Mannschaft
Nutzungsbedingungen

Über

VisuAlgo wurde konzeptioniert 2011 von Dr Steven Halim als ein Tool um seinen Studenten zu helfen Datenstrukturen und Algorithmen besser zu verstehen, indem sie die Grundlagen alleine und in ihrem eigenen Tempo lernen können.
VisuAlgo enthält viele fortgeschrittene Algorithmen die auch in Dr Steven Halim's Buch ('Competitive Programming', co-author ist sein Bruder Dr Felix Halim) und mehr. Heute, können die Visualisierungen/Animationen vieler fortgeschrittener Algorithmen nur auf VisoAlgo gefunden werden.
Obwohl die Visualisierungen speziell für die verschiedenen Datenstruktur und Algorithmik Kurse der National University of Singapore (NUS) gemacht sind, freuen wir uns, als Befürworter des Online Lernens, wenn auch andere neugierige Geister unsere Visualisierungen nützlich finden.
VisuAlgo ist nicht designed um gut auf kleinen Touchscreens (z,B, Smartphones) zu funktionieren, da die Darstellung komplexer Algorithmen viele Pixel benötigt und click-and-drag Aktionen zur Interaktion. Die minimale Bildschirmauflösung für ein akzeptables Benutz Erlebnis ist 1024x768 und nur die Startseite ist einigermaßen mobilfähig.
VisuAlgo ist ein laufendes Projekt und weitere komplexe Visualisierungen werden weiterhin entwickelt.
Die aufregendste Entwicklung ist der automatisierte Fragen Generator und Überprüfer (das Online Quiz System), dass Studenten erlaubt deren Wissen über grundlegende Datenstrukturen und Algorithmen zu testen. Die Fragen werden mit der Hilfe einiger Regeln zufällig generiert und die Antworten der Studenten werden automatisch von unserem Bewertungs Server bewertet. Das Online Quiz System, wenn es von mehr Informatik Tutoren übernommen wird, sollte eigentlich grundlegende Datenstrucktur- und Algorithmikfragen in Klausuren an vielen Universitäten ersetzten. Indem man ein wenig (allerdings nicht null) Gewicht darauf legt, dass das Online Quiz bestanden wird, kann ein Informatik Tutor (stark) das Können seiner Studenten was solche grundlegenden Fragen betrifft erhöhen, da die Studenten eine nahezu unendlich Anzahl ein Trainingsfragen beantworten können bevor sie das Online Quiz machen. Der Training Modus enthält aktuell Fragen für 12 Visualisierungsmodule. Die letzten 8 werden bald folgen, sodass es für alle Visualisierungsmodule ein Online Quiz gibt.
Eine weitere aktive Abteilung ist das Internationalisierungs Sub-Projekt von VisuAlgo. Wir wollen eine Datenbank für alle Informatik Begriffe aus alle englischen Texte im VisuAlgo System anlegen. Das ist eine große Aufgabe und benötigt Crowdsourcing. Sobald das System funktionstüchtig ist, werden wir VisuAlgo Besucher dazu einladen. Besonders wenn sie keine englischen Muttersprachler sind. Aktuel, haben wir auch verschiedene Notizen in verschiedenen Sprachen über VisuAlgo:
zh, id, kr, vn, th.

Mannschaft

Projektleiter & Berater (Juli 2011 bis heute)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Studentische Hilfskräfte 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Abschlussprojekt/UROP Studenten 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Abschlussprojekt/UROP Studenten 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Studentische Hilfskräfte 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Abschlussprojekt/UROP Studenten 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Abschlussprojekt/UROP Studenten 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Danksagungen
Dieses Projekt wird durch den großzügigen Teaching Enhancement Grant des NUS Centre for Development of Teaching and Learning (CDTL) ermöglicht.

Nutzungsbedingungen

VisuAlgo ist kostenlos für die Informatik-Community dieses Planeten (natürlich auch von Leute nicht von der Erde). Wenn dir VisuAlgo gefällt, ist die einzige Bezahlung um die wir bitten, das du anderen Informatik Studenten und Tutoren von dieser Seite erzählst. =) über Facebook, Twitter, Kurs Internet Seit, Blog Eintrag, Email usw.

Bist du ein Datenstruktur oder Algorithmik Student/Tutor, darfst du diese Webseite für deine Kurse nutzen. Solltest du Screenshots (Videos) von dieser Seite machen, darfst du diese woanders verwenden, solange du die URL dieser Seite (http://visualgo.net) als Referenz angibst. Es ist allerdings NICHT erlaubt VisuAlgo (client-Side) Dateien herunter zu laden und diese auf deiner eigenen Website zu hosten, da das ein  Plagiat wäre. Es ist auch NICHT erlaubt eine Anspaltung dieser Website zu machen und Varianten von VisuAlgo zu erstellen. Eine private Nutzung einer offline Kopie (client-side) von VisuAlgo ist erlaubt.

Beachte allerdings das VisuAlgo's Online Quiz System von Natur aus eine schwere Server-seitige Komponente hat und es gibt keinen einfachen Weg die Server-seitige Scripts und Datenbanken lokal zu speichern. Aktuell kann die allgemeinen Öffentlichkeit nur den 'Trainings Modus' nutzen um an das Online Quiz System zu kommen. Der 'Test-Modus' ist eine kontrollierterte Umgebung in der zufällig generierte Fragen und automatische Überprüfung für eine echte Prüfung in NUS genutzt werden. Andere interessierte Informatik Tutoren sollten Steven kontaktieren, wenn sie auch diesen 'Test-Modus' ausprobieren wollen.

Liste der Publikationen

Diese Arbeit wurde kurz beim CLI Workshop beim ACM ICPC Weltfinale 2012 (Polen, Warschau) und bei der IOI Konferenz bei IOI 2012 (Italien, Sirmione-Montichiari). Du kannst du diesen Link klicken um unser 2012 Paper über dieses System zu lesen (Es hieß 2012 noch nicht VisuAlgo).
Diese Arbeit wurde wurde hauptsächlich von ehemaligen Studenten gemacht. Die letzten Ergebnisse sind hier: Erin, Wang Zi, Rose, Ivan.

Bug Reports oder Anfragen zu neuen Features

VisuAgo ist kein fertiges Projekt. Dr Steven Halim arbeitet aktiv daran VisuAlgo zu verbessern. Wenn du beim benutzten von VisuAlgo in einer Visualisierung/Online Quiz einen Bug findest oder ein neues Feature möchtest, kontaktiere bitte Dr Steven Halim. Sein Kontakt ist die Verkettung seines Namens und at gmail dot com.