7    VisuAlgo.net / /matching Login (Unweighted Bipartite) Graph Matching (Unweighted General) Graph Matching
示例模式 ▿

>

>
go to beginning previous frame pause play next frame go to end

A Matching in a graph G = (V, E) is a subset M of E edges in G such that no two of which meet at a common vertex.


Maximum Cardinality Matching (MCM) problem is a Graph Matching problem where we seek a matching M that contains the largest possible number of edges. A possible variant is Perfect Matching where all V vertices are matched, i.e. the cardinality of M is V/2.


A Bipartite Graph is a graph whose vertices can be partitioned into two disjoint sets X and Y such that every edge can only connect a vertex in X to a vertex in Y.


Maximum Cardinality Bipartite Matching (MCBM) problem is the MCM problem in a Bipartite Graph, which is a lot easier than MCM problem in a General Graph.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
Please login if you are a repeated visitor or register for an (optional) free account first.

X Esc
下一个 PgDn

This visualization is currently limited to unweighted graphs only. Thus, we currently do not support Graph Matching problem variants involving weighted graphs...


Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
上一个 PgUp
下一个 PgDn

To switch between the unweighted MCBM (default, as it is much more popular) and unweighted MCM mode, click the respective header.


Here is an example of MCM mode. In MCM mode, one can draw a General, not necessarily Bipartite graphs. However, the graphs are unweighted (all edges have uniform weight 1).


The available algorithms are different in the two modes.


Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
上一个 PgUp
下一个 PgDn

You can view the visualisation here!


For Bipartite Graph visualization, we will re-layout the vertices of the graph so that the two disjoint sets are clearly visible as Left and Right sets. For General Graph, we do not relayout the vertices.


Initially, edges have grey color. Matched edges will have black color. Free/Matched edges along an augmenting path will have Orange/Light Blue colors, respectively.

X Esc
上一个 PgUp
下一个 PgDn

There are three different sources for specifying an input graph:

  1. Draw Graph: You can draw any undirected unweighted graph as the input graph (note that in MCBM mode, the drawn input graph will be relayout into a nice Bipartite graph layout during algorithm animation),
  2. Modeling: A lot of graph problems can be reduced into an MCBM problem. In this visualization, we have the modeling examples for the famous Rook Attack problem (currently disabled) and standard MCBM problem (also valid in MCM mode).
  3. Examples: You can select from the list of our example graphs to get you started. The list of examples are slightly different in the two MCBM vs MCM modes.
X Esc
上一个 PgUp
下一个 PgDn

There are several Max Cardinality Bipartite Matching (MCBM) algorithms in this visualization, plus one more in Max Flow visualization:

  1. O(VE) Augmenting Path Algorithm (without greedy pre-processing),
  2. O(√(V)E) Dinic's Max Flow Algorithm, see Max Flow visualization, select Modeling → Bipartite Matching → All 1, then use Dinic's algorithm.
  3. O(√(V)E) Hopcroft Karp's Algorithm,
  4. O(kE) Augmenting Path Algorithm++ (with randomized greedy pre-processing),

PS: Although possible, we will likely not use O(V3) Edmonds's Matching Algorithm if the input is guaranteed to be a Bipartite Graph.

X Esc
上一个 PgUp
下一个 PgDn

Augmenting Path is a path that starts from a free (unmatched) vertex u in graph G, alternates through unmatched, match, ..., unmatched edges in G, until it ends at another free vertex v. If we flip the edge status along that augmenting path, we will increase the number of edges in the matching set M by 1 and eliminates this augmenting path.


In 1957, Claude Berge proposes the following lemma: A matching M in graph G is maximum iff there is no more augmenting path in G.


The Augmenting Path Algorithm is a simple O(V*(V+E)) = O(V2 + VE) = O(VE) implementation of that lemma (on Bipartite Graph): Find and then eliminate augmenting paths in Bipartite Graph G. Click Augmenting Path Algorithm Demo to visualize this algorithm on the currently displayed random Bipartite Graph.

X Esc
上一个 PgUp
下一个 PgDn
vi match, vis; // global variables

int Aug(int L) { // return 1 if ∃ an augmenting path from L
if (vis[L]) return 0; // return 0 otherwise
vis[L] = 1;
for (auto &v : AL[L]) {
int R = v.first;
if (match[R] == -1 || Aug(match[R])) {
match[R] = L;
return 1; // found 1 matching
} }
return 0; // no matching
}
X Esc
上一个 PgUp
下一个 PgDn
// in int main(), build the bipartite graph
// use directed edges from left set (of size VLeft) to right set
int MCBM = 0;
match.assign(V, -1);
for (int L = 0; L < VLeft; L++) {
vis.assign(VLeft, 0);
MCBM += Aug(L); // find augmenting path starting from L
}
printf("Found %d matchings\n", MCBM);

You can also download ch4_09_mcbm.cpp/java from Competitive Programming 3 companion website.

X Esc
上一个 PgUp
下一个 PgDn

If we are given a Complete Bipartite Graph KN/2,N/2, i.e.
V = N/2+N/2 = N and E = N/2×N/2 = N2/4 ≈ N2, then
the Augmenting Path Algorithm discussed earlier will run in O(VE) = O(N×N2) = O(N3).


This is only OK for V ∈ [400..500].


Try executing the standard Augmenting Path Algorithm on this Extreme Test Case, which is an almost complete K5,5 Bipartite Graph.

X Esc
上一个 PgUp
下一个 PgDn

The MCBM problem can be modeled as a Max Flow problem. Go to Max Flow visualization page and see the flow graph modeling of MCBM problem (select Modeling → Bipartite Matching → all 1).


If we use one of the fastest Max Flow algorithm, i.e. Dinic's algorithm on this flow graph, we can find Max Flow = MCBM in O(√(V)E) time — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1 000..1 500].

X Esc
上一个 PgUp
下一个 PgDn

The key idea of Hopcroft Karp's (HK) Algorithm (invented in 1973) is identical to Dinic's Max Flow Algorithm discussed earlier, i.e. prioritize shortest augmenting paths (in terms of number of edges used) first. That's it, augmenting paths with 1 edge are processed first before longer augmenting paths with 3 edges, 5 edges, 7 edges, etc (the length always increase by 2 due to the nature of augmenting path in a Bipartite Graph).


Hopcroft Karp's Algorithm has time complexity of O(√(V)E) — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1 000..1 500].


Try HK Algorithm on the same Extreme Test Case earlier. You will notice that HK Algorithm can find the MCBM in a much faster time than the previous standard O(VE) Augmenting Path Algorithm.

X Esc
上一个 PgUp
下一个 PgDn

However, we can actually make the easy-to-code Augmenting Path Algorithm discussed earlier to avoid its worst case O(VE) behavior by doing O(V+E) randomized (to avoid adversary test case) greedy pre-processing before running the actual algorithm.


This O(V+E) additional pre-processing step is simple: For every vertex on the left set, match it with a randomly chosen unmatched neighbouring vertex on the right set. This way, we eliminates many trivial (one-edge) Augmenting Paths that consist of a free vertex u, an unmatched edge (u, v), and a free vertex v.


Try Augmenting Path Algorithm++ on the same Extreme Test Case earlier. Notice that the pre-processing step already eliminates many trivial 1-edge augmenting paths, making the actual Augmenting Path Algorithm only need to do little amount of additional work.

X Esc
上一个 PgUp
下一个 PgDn

Quite often, on randomly generated Bipartite Graph, the randomized greedy pre-processing step has cleared most of the matchings.


However, we can construct test case like: Examples: Randomized Greedy Processing Killer to make randomization as ineffective as possible. For every group of 4 vertices, there are 2 matchings. Random greedy processing has 50% chance of making mistake per group. Try this Hard Test Case case to see for yourself.


The worst case time complexity is no longer O(VE) but now O(kE) where k is a small integer, much smaller than V, k can be as small as 0 and is at most V/2. In our experiments, we estimate k to be "about √(V)" too. This version of Augmenting Path Algorithm++ allows us to solve MCBM problem with V ∈ [1 000..1 500] too.

X Esc
上一个 PgUp
下一个 PgDn

There are two Max Cardinality Matching (MCM) algorithms in this visualization:

  1. O(V^3) Edmonds's Matching algorithm (without greedy pre-processing),
  2. O(V^3) Edmonds's Matching algorithm (with greedy pre-processing),
X Esc
上一个 PgUp
下一个 PgDn

In General Graph, we may have Odd-Length cycle. Augmenting Path is not well defined in such graph, hence we cannot directly implement Claude Berge's lemma like what we did with Bipartite Graph.


Jack Edmonds call a path that starts from a free vertex u, alternates between free, matched, ..., free edges, and returns to the same free vertex u as Blossom. This situation is only possible if we have Odd-Length cycle, i.e. non-Bipartite Graph. Edmonds then proposed Blossom shrinking/contraction and expansion algorithm to solve this issue, details verbally.


This algorithm can be implemented in O(V^3).

X Esc
上一个 PgUp
下一个 PgDn

As with the Augmenting Path Algorithm++ for the MCBM problem, we can also do randomized greedy pre-processing step to eliminate as many 'trivial matchings' as possible upfront. This reduces the amount of work of Edmonds's Matching Algorithm, thus resulting in a faster time complexity — analysis TBA.

X Esc
上一个 PgUp
下一个 PgDn

We have not added visualizations for weighted variant of MCBM and MCM problems (future work).

X Esc
上一个 PgUp
下一个 PgDn
当操作进行时,状态面板将会有每个步骤的描述。
X Esc
上一个 PgUp
下一个 PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
上一个 PgUp
下一个 PgDn

Control the animation with the player controls! Keyboard shortcuts are:

Spacebar: play/pause/replay
Left/right arrows: step backward/step forward
-/+: decrease/increase speed
X Esc
上一个 PgUp
下一个 PgDn

Return to 'Exploration Mode' to start exploring!


Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

X Esc
上一个 PgUp

绘制图表

Modeling

Examples

Augmenting Path

>

Rook Attack

GO

Generate Random Bipartite Graph

Undirected Max Flow Killer

House of Cards

CS4234 Tutorial 3

F-mod

Randomized Greedy Processing Killer

K5,5

K5,5 (Almost)

Standard

With Randomized Greedy Preprocessing

Hopcroft Karp

Edmonds Blossom

Edmonds Blossom + Greedy

关于 团队 使用条款

关于

VisuAlgo在2011年由Steven Halim博士概念化,作为一个工具,帮助他的学生更好地理解数据结构和算法,让他们自己和自己的步伐学习基础。
VisuAlgo包含许多高级算法,这些算法在Steven Halim博士的书(“竞争规划”,与他的兄弟Felix Halim博士合作)和其他书中讨论。今天,一些高级算法的可视化/动画只能在VisuAlgo中找到。
虽然专门为新加坡国立大学(NUS)学生采取各种数据结构和算法类(例如CS1010,CS1020,CS2010,CS2020,CS3230和CS3230),作为在线学习的倡导者,我们希望世界各地的好奇心发现这些可视化也很有用。
VisuAlgo不是从一开始就设计为在小触摸屏(例如智能手机)上工作良好,因为需要满足许多复杂的算法可视化,需要大量的像素和点击并拖动手势进行交互。一个令人尊敬的用户体验的最低屏幕分辨率为1024x768,并且只有着陆页相对适合移动设备。
VisuAlgo是一个正在进行的项目,更复杂的可视化仍在开发中。
最令人兴奋的发展是自动问题生成器和验证器(在线测验系统),允许学生测试他们的基本数据结构和算法的知识。这些问题是通过一些规则随机生成的,学生的答案会在提交给我们的评分服务器后立即自动分级。这个在线测验系统,当它被更多的世界各地的CS教师采用,应该技术上消除许多大学的典型计算机科学考试手动基本数据结构和算法问题。通过在通过在线测验时设置小(但非零)的重量,CS教练可以(显着地)增加他/她的学生掌握这些基本问题,因为学生具有几乎无限数量的可以立即被验证的训练问题他们参加在线测验。培训模式目前包含12个可视化模块的问题。我们将很快添加剩余的8个可视化模块,以便VisuAlgo中的每个可视化模块都有在线测验组件。
另一个积极的发展分支是VisuAlgo的国际化子项目。我们要为VisuAlgo系统中出现的所有英语文本准备一个CS术语的数据库。这是一个很大的任务,需要众包。一旦系统准备就绪,我们将邀请VisuAlgo游客贡献,特别是如果你不是英语母语者。目前,我们还以各种语言写了有关VisuAlgo的公共注释:
zh, id, kr, vn, th.

团队

项目领导和顾问(2011年7月至今)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

本科生研究人员 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

最后一年项目/ UROP学生 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

最后一年项目/ UROP学生 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

本科生研究人员 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

最后一年项目/ UROP学生 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

最后一年项目/ UROP学生 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

致谢
这个项目是由来自NUS教学与学习发展中心(CDTL)的慷慨的教学增进赠款提供的。

使用条款

VisuAlgo是地球上的计算机科学社区免费。如果你喜欢VisuAlgo,我们对你的唯一的要求就是通过你知道的方式,比如:Facebook、Twitter、课程网页、博客评论、电子邮件等告诉其他计算机方面的学生/教师:VisuAlgo网站的神奇存在
如果您是数据结构和算法学生/教师,您可以直接将此网站用于您的课程。如果你从这个网站拍摄截图(视频),你可以使用屏幕截图(视频)在其他地方,只要你引用本网站的网址(http://visualgo.net)或出现在下面的出版物列表中作为参考。但是,您不能下载VisuAlgo(客户端)文件并将其托管在您自己的网站上,因为它是剽窃。到目前为止,我们不允许其他人分叉这个项目并创建VisuAlgo的变体。使用(客户端)的VisuAlgo的离线副本作为您的个人使用是很允许的。
请注意,VisuAlgo的在线测验组件本质上具有沉重的服务器端组件,并且没有简单的方法来在本地保存服务器端脚本和数据库。目前,公众只能使用“培训模式”来访问这些在线测验系统。目前,“测试模式”是一个更受控制的环境,用于使用这些随机生成的问题和自动验证在NUS的实际检查。其他感兴趣的CS教练应该联系史蒂文如果你想尝试这样的“测试模式”。
出版物名单
这项工作在2012年ACM ICPC世界总决赛(波兰,华沙)和IOI 2012年IOI大会(意大利Sirmione-Montichiari)的CLI讲习班上进行了简要介绍。您可以点击此链接阅读我们2012年关于这个系统的文章(它在2012年还没有被称为VisuAlgo)。
这项工作主要由我过去的学生完成。最近的最后报告是:Erin,Wang Zi,Rose,Ivan。
错误申报或请求添加新功能
VisuAlgo不是一个完成的项目。 Steven Halim博士仍在积极改进VisuAlgo。如果您在使用VisuAlgo并在我们的可视化页面/在线测验工具中发现错误,或者如果您想要求添加新功能,请联系Dr Steven Halim博士。他的联系邮箱是他的名字加谷歌邮箱后缀:StevenHalim@gmail.com。