>

>
1x
go to beginning previous frame pause play next frame go to end

A Matching in a graph G = (V, E) is a subset M of E edges in G such that no two of which meet at a common vertex.


Maximum Cardinality Matching (MCM) problem is a Graph Matching problem where we seek a matching M that contains the largest possible number of edges. A desirable but rarely possible result is Perfect Matching where all |V| vertices are matched (assuming |V| is even), i.e., the cardinality of M is |V|/2.


A Bipartite Graph is a graph whose vertices can be partitioned into two disjoint sets U and V such that every edge can only connect a vertex in U to a vertex in V.


Maximum Cardinality Bipartite Matching (MCBM) problem is the MCM problem in a Bipartite Graph, which is a lot easier than MCM problem in a General Graph.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

Graph Matching problems (and its variants) arise in various applications, e.g.,

  1. The underlying reason on why Social Development Network exists in Singapore
  2. Matching job openings (one disjoint set) to job applicants (the other disjoint set)
  3. The weighted version of #2 is called the Assignment problem
  4. Special-case of some NP-hard optimization problems
    (e.g., MVC, MIS, MPC on DAG, etc)
  5. Sub-routine of Christofides's 1.5-approximation algorithm for TSP, etc...

Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

In some applications, the weights of edges are not uniform (1 unit) but varies, and we may then want to take MCBM or MCM with minimum (or even maximum) total weight.


However, this visualization is currently limited to unweighted graphs only. Thus, we currently do not support Graph Matching problem variants involving weighted graphs...


Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

To switch between the unweighted MCBM (default, as it is much more popular) and unweighted MCM mode, click the respective header.


Here is an example of MCM mode. In MCM mode, one can draw a General, not necessarily Bipartite graphs. However, the graphs are unweighted (all edges have uniform weight 1).


The available algorithms are different in the two modes.


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

You can view the visualisation here!


For Bipartite Graph visualization, we will mostly layout the vertices of the graph so that the two disjoint sets (U and V) are clearly visible as Left (U) and Right (V) sets. When you draw your input bipartite graph, you can choose to re-layout your bipartite graph into this easier-to-visualize form.


For General Graph, we do not (and usually cannot) relayout the vertices into this Left Set and Right Set form.


Initially, edges have grey color. Matched edges will have black color. Free/Matched edges along an augmenting path will have Orange/Light Blue colors, respectively.

🕑

There are three different sources for specifying an input graph:

  1. Draw Graph: You can draw any undirected unweighted graph as the input graph.
    However, due to the way we visualize our MCBM algorithms, we need to impose one additional graph drawing constraint that does not exist in the actual MCBM problems. That constraint is that vertices on the left set are numbered from [0, n), and vertices on the right set are numbered from [n, n+m).
  2. Modeling: Several graph problems can be reduced into an MCBM problem. In this visualization, we have the modeling examples for the famous Rook Attack problem and standard MCBM problem (also valid in MCM mode).
  3. Examples: You can select from the list of our example graphs to get you started. The list of examples is slightly different in the two MCBM vs MCM modes.
🕑

There are several Max Cardinality Bipartite Matching (MCBM) algorithms in this visualization, plus one more in Max Flow visualization:

  1. By reducing MCBM problem into a Max-Flow problem in polynomial time,
    we can actually use any Max Flow algorithm to solve MCBM.
  2. O(VE) Augmenting Path Algorithm (without greedy pre-processing),
  3. O(√(V)E) Dinic's or Hopcroft-Karp Algorithm,
  4. O(kE) Augmenting Path Algorithm (with randomized greedy pre-processing),

PS1: Although possible, we will likely not use O(V3) Edmonds' Matching Algorithm if the input is guaranteed to be a Bipartite Graph (as it is much slower).

PS2: Although possible, we will also likely not use O(V3) Kuhn-Munkres Algorithm (not available in VisuAlgo yet) if the input is guaranteed to be an unweighted Bipartite Graph (again, as it is much slower).

🕑

The MCBM problem can be modeled (or reduced into) as a Max Flow problem in polynomial time.


Go to Max Flow visualization page and see the flow graph modeling of MCBM problem (select Modeling → Bipartite Matching → all 1). Basically, create a super source vertex s that connects to all vertices in the left set and also create a super sink vertex t where all vertices in the right set connect to t. Keep all edges in the flow graph directed from source to sink and with unit weight 1.


If we use one of the earliest Max Flow algorihtm, i.e., a simple Ford-Fulkerson algorithm, it will still be much faster than O(mf × E) as all edge weights in the flow graph are unit weight, i.e., in O(E^2).


If we use one of the fastest Max Flow algorithm, i.e., Dinic's algorithm on this flow graph, we can find Max Flow = MCBM in O(√(V)E) time — the analysis is omitted for now. This allows us to solve MCBM problem with V ∈ [1000..1500] in a typical 1s allowed runtime in many programming competitions.


Discussion: The edges in the flow graph must be directed. Why?
Then prove that this reduction is correct.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

Actually, we can just stop here, i.e., when given any MCBM(-related) problem, we can simply reduce it into a Max-Flow problem and use (the fastest) Max Flow algorithm.


However, there is a far simpler Graph Matching algorithm that we will see in the next few slides. It is based on a crucial theorem and can be implemented as an easy variation of the standard Depth-First Search (DFS) algorithm.

🕑

Augmenting Path is a path that starts from a free (unmatched) vertex u in graph G (note that G does not necessarily has to be a bipartite graph although augmenting path, if any, is much easier to find in a bipartite graph), alternates through unmatched (or free/'f'), matched (or 'm'), ..., unmatched ('f') edges in G, until it ends at another free vertex v. The pattern of any Augmenting Path will be fmf...fmf and is of odd length.


If we flip the edge status along that augmenting path, i.e., fmf...fmf into mfm...mfm, we will increase the number of edges in the matching set M by exactly 1 unit and eliminates this augmenting path.


In 1957, Claude Berge proposes the following theorem:
A matching M in graph G is maximum iff there is no more augmenting path in G.


Discussion: In class, prove the correctness of Berge's theorem!
In practice, we can just use it verbatim.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

Recall: Berge's theorem states:
A matching M in graph G is maximum iff there is no more augmenting path in G.


The Augmenting Path Algorithm (on Bipartite Graph) is a simple O(V*(V+E)) = O(V2 + VE) = O(VE) implementation (a modification of DFS) of that theorem: Find and then eliminate augmenting paths in Bipartite Graph G.


Click Augmenting Path Algorithm Demo to visualize this algorithm on a special test case called X̄ (X-bar).


Basically, this Augmenting Path Algorithm scans through all vertices on the left set (that were initially free vertices) one by one. Suppose L on the left set is a free vertex, this algorithm will recursively (via modification of DFS) go to a vertex R on the right set:

  1. If R is another free vertex, we have found one augmenting path (e.g., Augmenting Path 0-2 initially), and
  2. If R is already matched (this information is stored at match[R]), we immediately return to the left set and recurse (e.g, path 1-2-immediately return to 0-then 0-3, to find the second Augmenting Path 1-2-0-3)
🕑
vi match, vis;           // global variables

int Aug(int L) { // notice similarities with DFS algorithm
if (vis[L]) return 0; // L visited, return 0
vis[L] = 1;
for (auto& R : AL[L])
if ((match[R] == -1) || Aug(match[R])) { // the key modification
match[R] = L; // flip status
return 1; // found 1 matching
}
return 0; // Augmenting Path is not found
}
🕑
// in int main(), build the bipartite graph
// use directed edges from left set (of size VLeft) to right set
int MCBM = 0;
match.assign(V, -1);
for (int L = 0; L < VLeft; ++L) { // try all left vertices
vis.assign(VLeft, 0);
MCBM += Aug(L); // find augmenting path starting from L
}
printf("Found %d matchings\n", MCBM);

Please see the full implementation at Competitive Programming book repository: mcbm.cpp | py | java | ml.

🕑

If we are given a Complete Bipartite Graph KN/2,N/2, i.e.,
V = N/2+N/2 = N and E = N/2×N/2 = N2/4 ≈ N2, then
the Augmenting Path Algorithm discussed earlier will run in O(VE) = O(N×N2) = O(N3).


This is only OK for V ∈ [400..500] in a typical 1s allowed runtime in many programming competitions.


Try executing the standard Augmenting Path Algorithm on this Extreme Test Case, which is an almost complete K5,5 Bipartite Graph.


It feels bad, especially on the latter iterations...
So, should we avoid using this simple Augmenting Path algorithm?

🕑

The key idea of Hopcroft-Karp (HK) Algorithm (invented in 1973) is identical to Dinic's Max Flow Algorithm, i.e., prioritize shortest augmenting paths (in terms of number of edges used) first. That's it, augmenting paths with 1 edge are processed first before longer augmenting paths with 3 edges, 5 edges, 7 edges, etc (the length always increase by 2 due to the nature of augmenting path in a Bipartite Graph).


Hopcroft-Karp Algorithm has time complexity of O(√(V)E) — analysis omitted for now. This allows us to solve MCBM problem with V ∈ [1000..1500] in a typical 1s allowed runtime in many programming competitions — the similar range as with running Dinic's algorithm on Bipartite Matching flow graph.


Try HK Algorithm on the same Extreme Test Case earlier. You will notice that HK Algorithm can find the MCBM in a much faster time than the previous standard O(VE) Augmenting Path Algorithm.


Since Hopcroft-Karp algorithm is essentially also Dinic's algorithm, we treat both as 'approximately equal'.

🕑

However, we can actually make the easy-to-code Augmenting Path Algorithm discussed earlier to avoid its worst case O(VE) behavior by doing O(V+E) randomized (to avoid adversary test case) greedy pre-processing before running the actual algorithm.


This O(V+E) additional pre-processing step is simple: For every vertex on the left set, match it with a randomly chosen unmatched neighbouring vertex on the right set. This way, we eliminate many trivial (one-edge) Augmenting Paths that consist of a free vertex u, an unmatched edge (u, v), and a free vertex v.


Try Augmenting Path Algorithm Plus on the same Extreme Test Case earlier. Notice that the pre-processing step already eliminates many trivial 1-edge augmenting paths, making the actual Augmenting Path Algorithm only need to do little amount of additional work.

🕑

Quite often, on randomly generated Bipartite Graph, the randomized greedy pre-processing step has cleared most of the matchings.


However, we can construct test case like: Example Graphs, Corner Case, Rand Greedy AP Killer to make randomization as ineffective as possible. For every group of 4 vertices, there are 2 matchings. Random greedy processing has 50% chance of making mistake per group (but since each group has only short Augmenting Paths, the fixes are not 'long'). Try this Test Case with Multiple Components case to see for yourself.


The worst case time complexity is no longer O(VE) but now O(kE) where k is a small integer, much smaller than V, k can be as small as 0 and is at most V/2 (any maximal matching, as with this case, has size of at least half of the maximum matching). In our empirical experiments, we estimate k to be "about √(V)" too. This version of Augmenting Path Algorithm Plus also allows us to solve MCBM problem with V ∈ [1000..1500] in a typical 1s allowed runtime in many programming competitions.

🕑

So, when presented with an MCBM problem, which route should we take?

  1. Reduce the MCBM problem into Max-Flow and use Dinic's algorithm (essentially Hopcroft-Karp algorithm) and gets O(√(V)E) performance guarantee but with a much longer implementation?
  2. Use Augmenting Path algorithm with Randomized Greedy Processing with O(kE) performance with good empirical results and a much shorter implementation?

Discussion: Discuss these two routes!

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

Unfortunately there is no weighted MCBM algorithm (e.g., Hungarian or Kuhn-Munkres) visualization in VisuAlgo yet. But the plan is to have this visualization eventually.


For this section, please refer to CP4 Book 2 Chapter 9.25 and 9.27.

🕑

When Graph Matching is posed on general graphs (the MCM problem), it is (much) harder to find Augmenting Path. In fact, before Jack Edmonds published his famous paper titled "Paths, Trees, and Flowers" in 1965, this MCM problem was thought to be an (NP-)hard optimization problem.


There are two Max Cardinality Matching (MCM) algorithms in this visualization:

  1. O(V^3) Edmonds' Matching algorithm (without greedy pre-processing),
  2. O(V^3) Edmonds' Matching algorithm (with greedy pre-processing),
🕑

In General Graph, we may have Odd-Length cycle. Augmenting Path is not well defined in such a graph (see below), hence we cannot easily implement Claude Berge's theorem like what we did with Bipartite Graph.


Jack Edmonds call a path that starts from a free vertex u, alternates between free, matched, ..., free edges, and returns to the same free vertex u as a Blossom. This situation is only possible if we have Odd-Length cycle, i.e., in a non-Bipartite Graph. Edmonds then proposed Blossom shrinking/contraction and expansion algorithm to solve this issue.


For details on how this algorithm works, read CP4 Section 9.28.


This algorithm can be implemented in O(V^3).

🕑
O(V^3) Edmonds' Matching Algorithm Plus

As with the Augmenting Path Algorithm Plus for the MCBM problem, we can also do randomized greedy pre-processing step to eliminate as many 'trivial matchings' as possible upfront. This reduces the amount of work of Edmonds' Matching Algorithm, thus resulting in a faster time complexity — analysis TBA.

🕑

We have not added the visualizations for weighted variant of MCBM and MCM problems. They are for future work. Among the two, weighted MCBM will likely be added earlier than the weighted MCM version.


One of the possible solution for weighted MCBM problem is the Hungarian algorithm. This algorithm also has another name: The Kuhn-Munkres algorithm. This algorithm relies on Berge's Augmenting Path Theorem too, but it uses the theorem slightly differently.

🕑

To strengthen your understanding about these Graph Matching problem, its variations, and the multiple possible solutions, please try solving as many of these programming competition problems listed below:

  1. Standard MCBM (but need a fast algorithm): Kattis - flippingcards
  2. Greedy Bipartite Matching: Kattis - froshweek2
    (you do not need a specific MCBM algorithm for this,
    in fact, it will be too slow if you use any algorithm discussed here)
  3. Special case of an NP-hard optimization problem: Kattis - TBA
  4. Rather straightforward weighted MCBM: Kattis - engaging
🕑

To tackle those programming contest problems, you are allowed to use/modify our implementation code for Augmenting Path Algorithm (with Randomized Greedy Preprocessing): mcbm.cpp | py | java | ml


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Edit Graph

Modeling

图示

增广路

>

Rook Attack

Generate Random Bipartite Graph, specify n, m, and edge density

K2,2

F-mod

Corner Case

Special Case

Performance Test

Matching with Capacity

waif (WA)

CP4 3.11a*

Theorem

标准

带有随机贪心预处理

Hopcroft Karp

Edmonds Blossom

Edmonds Blossom + Greedy

We use cookies to improve our website.
By clicking ACCEPT, you agree to our use of Google Analytics for analysing user behaviour and improving user experience as described in our Privacy Policy.
By clicking reject, only cookies necessary for site functions will be used.

ACCEPT REJECT
关于 团队 使用条款 隐私政策

关于

VisuAlgo于2011年由Steven Halim博士创建,是一个允许学生以自己的速度自学基础知识,从而更好地学习数据结构与算法的工具。
VisuAlgo包含许多高级算法,这些算法在Steven Halim博士的书(“Competitive Programming”,与他的兄弟Felix Halim博士合作)和其他书中有讨论。今天,一些高级算法的可视化/动画只能在VisuAlgo中找到。
虽然本网站是专门为新加坡国立大学(NUS)学生学习各种数据结构和算法类(例如CS1010,CS2040,CS3230,CS3233,CS4234)而设,但我们作为在线学习的倡导者,我们非常希望世界各地的好奇的头脑能发现这些非常有用的算法可视化。
VisuAlgo不是从一开始就设计为在小触摸屏(例如智能手机)上工作良好,因为为了满足许多复杂算法可视化,需要大量的像素和点击并拖动手势进行交互。为得到良好的用户体验,最低屏幕分辨率应为1024x768,并且本网站只有首页相对适合移动设备。但是,我们正在测试一个准备在2022年4月发布的移动版本。
VisuAlgo是一个正在进行的项目,更复杂的可视化仍在开发中。
最令人兴奋的发展是自动问题生成器和验证器(在线测验系统),允许学生测试他们的基本数据结构和算法的知识。这些问题是通过一些随机生成的规则,学生的答案会在提交给我们的评分服务器后立即自动分级。这个在线测验系统,当它被更多的世界各地的CS教师采用,应该能从技术上消除许多大学的典型计算机科学考试手动基本数据结构和算法问题。通过在通过在线测验时设置小(但非零)的重量,CS教练可以(显着地)增加他/她的学生掌握这些基本问题,因为学生具有几乎无限数量的可以立即被验证的训练问题他们参加在线测验。培训模式目前包含12个可视化模块的问题。我们将很快添加剩余的12个可视化模块,以便VisuAlgo中的每个可视化模块都有在线测验组件。
VisuAlgo支持三种语言:英语,中文,印尼语。目前,我们还以各种语言写了有关VisuAlgo的公共注释:
id, kr, vn, th.

团队

项目领导和顾问(2011年7月至今)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

本科生研究人员 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

最后一年项目/ UROP学生 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

最后一年项目/ UROP学生 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

本科生研究人员 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

最后一年项目/ UROP学生 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

最后一年项目/ UROP学生 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

最后一年项目/ UROP学生 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

最后一年项目/ UROP学生 6 (Aug 2022-Apr 2023)
Lim Dewen Aloysius, Ting Xiao

List of translators who have contributed ≥100 translations can be found at statistics page.

致谢
本项目运营资金是由NUS教学与学习发展中心(CDTL)的教学增进款慷慨提供的。

使用条款

VisuAlgo is free of charge for Computer Science community on earth. If you like VisuAlgo, the only "payment" that we ask of you is for you to tell the existence of VisuAlgo to other Computer Science students/instructors that you know =) via Facebook/Twitter/Instagram/TikTok posts, course webpages, blog reviews, emails, etc.

If you are a data structure and algorithm student/instructor, you are allowed to use this website directly for your classes. If you take screen shots (videos) from this website, you can use the screen shots (videos) elsewhere as long as you cite the URL of this website (https://visualgo.net) and/or list of publications below as reference. However, you are NOT allowed to download VisuAlgo (client-side) files and host it on your own website as it is plagiarism. As of now, we do NOT allow other people to fork this project and create variants of VisuAlgo. Using the offline copy of (client-side) VisuAlgo for your personal usage is fine.

Note that VisuAlgo's online quiz component is by nature has heavy server-side component and there is no easy way to save the server-side scripts and databases locally. Currently, the general public can only use the 'training mode' to access these online quiz system. Currently the 'test mode' is a more controlled environment for using these randomly generated questions and automatic verification for real examinations in NUS.

List of Publications

This work has been presented briefly at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

This work is done mostly by my past students. 

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

隐私政策

Version 1.1 (Updated Fri, 14 Jan 2022).

Disclosure to all visitors: We currently use Google Analytics to get an overview understanding of our site visitors. We now give option for user to Accept or Reject this tracker.

Since Wed, 22 Dec 2021, only National University of Singapore (NUS) staffs/students and approved CS lecturers outside of NUS who have written a request to Steven can login to VisuAlgo, anyone else in the world will have to use VisuAlgo as an anonymous user that is not really trackable other than what are tracked by Google Analytics.

For NUS students enrolled in modules that uses VisuAlgo: By using a VisuAlgo account (a tuple of NUS official email address, NUS official student name as in the class roster, and a password that is encrypted on the server side — no other personal data is stored), you are giving a consent for your module lecturer to keep track of your e-lecture slides reading and online quiz training progresses that is needed to run the module smoothly. Your VisuAlgo account will also be needed for taking NUS official VisuAlgo Online Quizzes and thus passing your account credentials to another person to do the Online Quiz on your behalf constitutes an academic offense. Your user account will be purged after the conclusion of the module unless you choose to keep your account (OPT-IN). Access to the full VisuAlgo database (with encrypted passwords) is limited to Steven himself.

For other NUS students, you can self-register a VisuAlgo account by yourself (OPT-IN).

For other CS lecturers worldwide who have written to Steven, a VisuAlgo account (your (non-NUS) email address, you can use any display name, and encrypted password) is needed to distinguish your online credential versus the rest of the world. Your account will be tracked similarly as a normal NUS student account above but it will have CS lecturer specific features, namely the ability to see the hidden slides that contain (interesting) answers to the questions presented in the preceding slides before the hidden slides. You can also access Hard setting of the VisuAlgo Online Quizzes. You can freely use the material to enhance your data structures and algorithm classes. Note that there can be other CS lecturer specific features in the future.

For anyone with VisuAlgo account, you can remove your own account by yourself should you wish to no longer be associated with VisuAlgo tool.