>

>
1x
go to beginning previous frame pause play next frame go to end

给定一个图,我们可以使用O(V+E)DFS(深度优先搜索)或BFS(广度优先搜索)算法来遍历该图并探索该图的特征/属性。每种算法都有自己的特点、特征和副作用,我们将在这个可视化中探讨。
这个可视化的内容很丰富,有很多DFS和BFS的变体(都以O(V+E)运行),比如:
  1. 拓扑排序算法(包括DFS和BFS/Kahn的算法版本),
  2. 二分图检查器算法(包括DFS和BFS版本),
  3. 切割顶点和桥的查找算法,
  4. 强连通分量(SCC)查找算法
    (Kosaraju的和Tarjan的版本),
  5. 以及2-SAT检查算法。

Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

当所选的图遍历算法运行时,将在次处显示动画。


我们使用节点 + 边颜色(颜色方案将很快阐述),偶尔使用节点下的额外的文本(红色字体)来突出显示更改。

所有的图遍历算法都适用于有向图(这是默认设置,其中每个边都有一个箭头指示其反向),但是 Bipartite Graph Check 算法和 Cut Vertex & Bridge 查找算法 需要无向图(通过这种可视化,转换是自动完成的)。

Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

There are two different sources for specifying an input graph:

  1. Edit Graph: You can draw a new graph or edit an example unweighted directed graph as the input graph (to draw bidirectional edge (u, v), you can draw two directed edges u → v and v → u).
  2. Example Graphs: You can select from the list of our selected example graphs to get you started.

Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

如果您还没有探索/掌握 Binary Heap 的概念,尤其是 Binary Search Tree, ,我们建议您首先探索它们,因为遍历一个(二叉)树结构比遍历一般图简单得多。

Quiz: Mini pre-requisite check. What are the Pre-/In-/Post-order traversal of the binary tree shown (root = vertex 0), left and right child are as drawn?

In = 1, 0, 3, 2, 4
Pre = 0, 2, 4, 3, 1
In = 4, 2, 3, 0, 1
Post = 4, 3, 2, 1, 0
Pre = 0, 1, 2, 3, 4
Post = 1, 3, 4, 2, 0

Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑
我们通常从(二叉)树的最重要的顶点:节点 开始。
如果给定的树不是“rooted”(参见示例图片),我们可以选择任何一个顶点(例如,示例图片中的顶点0)并将其指定为根。如果我们想象所有边都是相似长度的弦,那么在”实际向上拉指定的根“并让中立向下拉动其余部分之后,我们有一个有根的(向下)树 - 见下一张幻灯片。
PS:从技术上来讲,这种转换是通过运行我们即将探索的 DFS(0) 来实现的。
🕑
二叉树中,我们最多只有两个相邻的选择:从当前顶点开始,我们可以先到左边的子树,或者先到右边的子树。我们还可以选择在访问其中一个(或两个)子树之前或之后访问当前顶点。
这产生了个有代表性的:前序(访问当前顶点,访问其左子树,访问其右子树),中序(左,当前,右),和后序(左,右,当前)遍历。
讨论:您是否注意到还有其它三种可能的二叉树的遍历组合?他们是什么?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
一个二叉树中,或者概括来说 一个树结构,不包含大于三个不同的顶点(我们不考虑那些连通两个顶点的双向路径所产生的小圈 我们可以很容易的处理掉它们 - 往前翻三页)
🕑

在一般图中,我们没有根节点的概念。相反,我们需要选择一个不同的节点作为遍历的起始点,即源点 s

我们还有一个节点的 0, 1, ..., k 个邻点,而不仅仅是 ≤ 2。
我们可能或者实际上很可能)在我们的一般的图具有循环,无论是像 u → v → u 那样的简单的环,还是像 a → b → c → a 这样的不简单的环。
但不用担心,图的遍历是一个具有两种经典算法的简单问题:DFS 和 BFS。
🕑
最基本的图遍历算法之一是 O(V+E) 深度优先搜索(DFS)。
DFS 采用一个输入参数:源点 s
DFS 是最基本的图的算法之一,因此请花时间了解该算法的关键步骤。
🕑

mazeDFS类比一个只有一个人口和一个出口的迷宫。您在 入口处,想要探索迷宫到达出口。显然你不能分身。

在继续之前,先思考这些反思性问题:如果您面前有分支选择,您会怎么做?如何避免进入循环?如何标记自己的路径?提示:你需要一只粉笔,石头(或任何其他标记物)和一根(长)线。

🕑
顾名思义,DFS从一个已知的源顶点  s 使用递归(隐式堆)来控制访问顺序为走到最深再返回。

如果DFS在顶点 u 并且它有 X 个邻居,它会选择第一个邻居 V1 (通常是序号最小的那个顶点), 使用递归访问所有 V1可以到达的顶点, 最终返回顶点 u. DFS 接下来对其他的邻居做同样的事指导探索完成最后一个邻居 VX 和它所能触及到的顶点.

等下看了DFS的动画 这个冗长的解释会变得清晰起来。
🕑

如果一个图是圈,之前的“尝试所有”的方法可能让DFS陷入循环。所以DFS的基本形式用一个大小为 V 个顶点的数组 status[u] 来确定两种情况 分别为 u 已经被访问过了 或者没有被访问过。只有当 u 还没有被访问过的时候 DFS才可以访问顶点 u.


当DFS没有路可走的时候它会跳出当前的递归 回去 到之前的顶点 (p[u], 看下一页).

🕑

DFS 用另一个大小为 V 个顶点数组 p[u] 来记住在DFS遍历路径上每一个顶点 uparent/predecessor/previous(父/祖先/前)顶点。

最开始的顶点的祖先也就是 p[s] 被设定为-1也就是说它没有祖先 (因为最低的顶点是顶点0).

从一个源顶点 s 到一个可以到达的顶点 u 所生成的路径反过来 就是 DFS 生成树. 我们给这些 树边红色.

🕑

现在,忽略显示的伪代码中额外的 status[u] = explored 以及可视化中的 蓝色灰色 边的存在 (将很快会解释)。

不用多说,让我们在这个 e-Lecture 的默认示例图上执行 DFS(0) (CP3 Figure 4.1)。 Recap DFS Example
到目前为止,DFS 的基本版本已经足够用于大多数的简单案例。
🕑

DFS 的时间复杂度是 O(V+E) ,因为:

  1. 每个节点只访问过一次,因为 DFS 将仅递归地探索节点 u 如果 status[u] = unvisited — O(V)
  2. 每次访问完一个节点,都会探索其所有 k 个邻点,因此在访问所有节点之后,我们已检查了所有 E 边 — (O(E) ,因为i每个节点的邻点总数等于 E)。
🕑

DFS 的he O(V+E) 时间复杂度只有当我们可以在 O(k) 时间内访问一个顶点的所有 k 个邻点时才可以实现。

Quiz: Which underlying graph data structure support that operation?

Adjacency List
Edge List
Adjacency Matrix

讨论:为什么?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
另一种基本的图遍历算法是 O(V+E) 广度优先搜索 (BFS)。
与 DFS 一样,BFS 也采用一个输入参数:源点 s
DFS 和 BFS 都有自己的优点和缺点。学习两者并对正确的情况采用正确的图遍历算法是非常重要的。
🕑
想象一下静止的水,然后你扔石头。石头撞击水面的第一个位置是源点的位置,并且随后在水面上的波纹效应类似于 BFS 遍历模式。
🕑

BFS 与之前讨论过的非常相似,但有一些差异。

BFS 从源点 s 开始,但它在更深入之前使用 queue 尽最宽可能地将访问序列排序。


BFS 还是用大小为 V 节点的布尔数组来区分两种不同的状态:已访问节点和未访问节点(我们不会像使用 DFS 那样使用 BFS 来检测反向边)。

在此可视化中,我们还展示从未加权图中的相同源点 s 开始,此图的 BFS 生成树等于其 SSSP spanning tree.
🕑

不多说,让我们在默认的示例图上执行 BFS(5) (CP3 Figure 4.3). Recap BFS Example.


注意这里是 宽度优先 式的探索 因为我们用了 先进先出的数据结构:队列?

🕑

BFS的时间复杂度是 O(V+E),因为:

  1. 每一个顶点都被访问一次 因为它们只能进入队列一次— O(V)
  2. 每当一个顶点从队列中出队时,所有它的 k 个邻居都会被探索 所以当所有的顶点都被访问过后,我们一共探索了 E 条路径 — (O(E) 因为每个顶点的邻居总数为 E).

对于DFS来说 O(V+E) 只有在用 邻接表 图数据结构 — 和DFS分析相同

🕑

到现在为止,我们可以用 DFS/BFS 去解决一些图的遍历问题变种:

  1. 检测可达性
  2. 显示出遍历路径
  3. 分辨/计数/标记 一个无向图的连通分量(CCs)
  4. 探测图是否有圈(cyclic)
  5. 拓补排序(只在有向无圈图 DAG中)

多数的数据结构和算法课程只传授这些 DFS/BFS 的基本应用,尽管它们可以做更多...

🕑

如果您被要求测试图中的节点 s 和一个(不同的)节点 t 是否可达,即直接连接(通过一条边)或间接连接(通过简单的非环路径),则可以调用 O(V+E) DFS(s) (或 BFS(s)) 并检查是否 status[t] = visited。

例子 1:s = 0t = 4, 运行 DFS(0) 并注意 status[4] = visited. 例子 2: s = 0t = 7, 运行 DFS(0) 并注意 status[7] = unvisited.

🕑

回想:每次用DFS或BFS从定点u到顶点v(一个生成树中的树边)时,我们设置p[v] = u。我们可以使用以下简单的递归函数来打印出存储在数组 p 中的路径。可能的后续讨论:您能以迭代的形式写出来吗?(容易解决)

method backtrack(u)
if (u == -1) stop
backtrack(p[u]);
output vertex u

要打印图中从源点到目标顶点 t 的路径,可以调用 O(V+E) DFS(s) (或 BFS(s)) ,然后调用 O(V)

backtrack 去返回 (t)。示例: s = 0t = 4,您可以调用 DFS(0) 然后backtrack(4)Elaborate

🕑

我们可以通过简单地调用 O(V+E) DFS(s) (或 BFS(s)) ,并枚举所有 status[v] = visited 的节点 v,来枚举从无向图中的节点 s 可到达的所有节点(如上图的示例图所示)。

示例: s = 0,运行 DFS(0) 并注意 status[{0,1,2,3,4}] = visited,因此它们都是从节点 0 可到达的节点,即它们形成一个连通分量(CC)
🕑

我们可以用如下的伪代码来计算连通分量(CCs)的数量:

CC = 0
for all u in V, set status[u] = unvisited
for all u in V
if (status[u] == unvisited)
CC++ // 我们可以用CC计数器的数量来作为CC的标记
DFS(u) // 或者 BFS(u), 来标记它的成员为已访问
output CC // 上面的示例图的答案是3
// CC 0 = {0,1,2,3,4}, CC 1 = {5}, CC 2 = {6,7,8}

如果你想要给每一个CC你自己的标记,你可以简单修改 DFS(u)/BFS(u) 的代码。

🕑

Quiz: What is the time complexity of Counting the Number of CCs algorithm?

Calling O(V+E) DFS/BFS V times, so O(V*(V+E)) = O(V^2 + VE)
Trick question, the answer is none of the above, it is O(_____)
It is still O(V+E)

讨论:为什么?
🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑

为了深入我们对底层图的理解,我们可以 扩大 DFS算法的基础。


在这个动画里, 我们用 蓝色 来表示DFS生成树的 返回 边。 如果发现了至少一个返回边 , 那代表被遍历的图(部分)是圈 的,而如果没有返回边的话,那就代表从出发点开始的部分并不是圈的。

🕑

为了侦测 返回边,我们可以通过修改 status[u] 来记录 种不同的状态:

  1. 未访问: 和之前一样,DFS还没有访问过 u
  2. 已探索: DFS已经访问了 u, 但是至少有一个 u 的邻居还没有被探索 (DFS会先 深度优先 式的先去探索那个顶点的邻居),
  3. 已访问: 增强版的定义:顶点 u 的所有邻居都已经被探索过了并且DFS正要从顶点 u 原路返回去顶点 p[u].

如果DFS现在在顶点 x ,同时正在在探索边 x → y 并且遇到 status[y] = explored, 我们可以确认 x → y 是一个 返回边 (我们找到了一个圈因为我们之前在顶点 y (因此 status[y] = explored), 走更深去探索 y 的邻居等等, 但是我们现在在顶点 x ,它是一个可以从 y 出发所抵达的顶点 但是顶点 x 引领我们走回了 y).

🕑

图中不是 树边 也不是 返回边 的路径都以 灰色 显示。他们叫做 前进或交叉边,对于现在的我们来说用处不大, 不再赘述。


现在,综合新的理解,在上面的示例图中试试 DFS(0), 特别留意一个顶点的三种不同状态 (未访问/正常的黑色圆, 已探索/蓝色的圆, 已访问/橘色的圆) 还有 返回边。 2 → 1 被探测到是一个返回边 因为它是圈(circle) 1 → 3 → 2 → 1 的一部分(从”已探索“的顶点2到”已探索“的顶点1)(相似的 6 → 4 是圈 4 → 5 → 7 → 6 → 4的一部分)。

注意,如果2 → 1和6 → 4被逆转成1 → 2和4 → 6,那么这个图将会被正确地归类为无环图,因为3 → 2和4 → 6从”已探索“移动到”已访问“。如果我们只用两种状态”已访问“和”未访问“,那么我们将无法把这两种情况分开。

🕑

还有另一个可以被视为”简单“的 DFS(以及 BFS)应用:执行有向无环图(DAG)的拓扑排序 — 参见上面的示例。

DAG 的拓扑排序是此 DAG 的节点的线性排序,其中每个节点位于其传出边所连接的所有节点之前。
每个 DAG (可以用之前的DFS来检查)至少有一个但可能更多的拓扑排序/秩序。
DAG拓扑排序的主要目的是用于 Dynamic Programming (DP) 技术。例如,此拓扑排序过程在 DP solution for SSSP on DAG内部使用。
🕑

我们可以使用 O(V+E) DFS 或 BFS 来执行有向无环图(DAG)的拓扑排序。

与普通 DFS 相比,DFS 版本只需要额外的一行,基本上是此图的后序遍历。在示例的DAG上尝试 Toposort (DFS)
BFS 版本基于没有传入边的节点的概念,也称为 Kahn 算法.。在示例的DAG上尝试 Toposort (BFS/Kahn's)
🕑
目前为止,你已经看到了DFS/BFS(加上轻微改动)可以解决的问题。有一些更高级的应用需要更多的改动,更先进的学生可以自己探索:
  1. 检测二分图 (DFS 和 BFS 变种),
  2. 寻找无向图的衔接点(切顶)和桥梁(仅DFS),
  3. 寻找有向图的强连通分量(SCC)(Tarjan和Kosaraju的算法), 以及
  4. 2-SAT(可满足性) 检查算法.


广告:细节写在Competitive Programming book一书中
🕑
我们可以使用O(V+E)DFS或BFS(它们的工作原理相似)来检查一个给定的图是否是一个二分图(Bipartite Graph),方法是在相邻的顶点之间给出交替的颜色(在这个可视化中是橙色和蓝色),如果我们最终给两个相邻的顶点分配了相同的颜色,则报告 "非二分",如果有可能进行这样的 "二分上色"过程,则报告 "二分"。试试DFS_CheckerBFS_Checker在双子星图的例子中。
二分图在图形匹配问题上有很好的应用。
请注意,二分图通常只对无向图进行定义,所以在继续之前,这个可视化将自动把有向的输入图转换成无向的版本。这个动作是不可逆的,你可能不得不为其他目的再次重绘有向输入图。
🕑
我们可以将O(V+E)DFS算法修改为寻找无向图的切顶和桥的算法(但不幸的是,这并不简单)。
切割顶点,或衔接点,是指无向图中的一个顶点,移除该顶点会使图断开连接。同样地,桥是无向图中的一条边,除去这条边就会断开图的连接。
请注意,这种寻找切割点和桥的算法只适用于无向图,所以在继续之前,这个可视化会自动将有向图的输入转化为无向图的版本。这个动作是不可逆的,你可能不得不为其他目的再次重绘有向输入图。你可以在上面的例子图上尝试Find Cut Vertices & Bridges
🕑
我们可以将O(V+E)DFS算法修改为寻找有向图G的强连通分量(SCC)的算法(但不幸的是,这并不简单)。
有向图G的SCC定义为G的一个子图S,对于S中的任何两个顶点u和v,顶点u可以直接或通过路径到达顶点v,而顶点v也可以直接或通过路径返回到顶点u。
有两种已知的算法用于寻找有向图的SCC。Kosaraju的和Tarjan的。这两种算法都可以在这个可视化中找到。在上面的有向图例子上试试Kosaraju's Algorithm和/或Tarjan's Algorithm
🕑
我们也有2-SAT检查器算法。给出一个2-SAT(2-Satisfiability)实例,其形式是子句(clause)的组合:(clause1) ^ (clause2) ^ ... ^ (clausen),并且每个子句都是由最多两个变量(vara v varb)组成的二元析取形式,请确定我们是否可以给这些变量分配真/假值,从而使整个2-SAT实例被评估为真(即可满足)。
事实证明,每个子句(a v b)可以变成四个顶点a、not a、b和not b,和两条边(not a → b)和(not b → a)。因此,我们有一个有向图。如果在这种图的强连通分量内至少有一个变量和它的否定,我们知道它不可能满足2-SAT实例。
在这样的有向图建模之后,我们可以运行一个SCC查找算法(Kosaraju的或Tarjan的算法)来确定2-SAT实例的可满足性。
🕑

Quiz: Which Graph Traversal Algorithm is Better?

It Depends on the Situation
Both are Equally Good
Always DFS
Always BFS

讨论:为什么?

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.

🕑
我们仍然可以只用 DFS/BFS 做很多事情......
🕑

关于这两个图的遍历算法有一些有趣的问题:DFS + BFS 和图遍历问题的变体,请在 Graph Traversal 培训模块中练习(不需要登陆,但是您最多只能做短和中等难度的问题)。

但是,对于注册用户,您应该登陆后转到 Main Training Page 以正式清除此模块,此类成就将记录在您的用户账户中。

🕑

我们有一些Kattis问题多多少少用到了DFS和/或BFS: Kattis - reachableroadsKattis - breakingbad.


试试解出它们并且尝试 更多 有趣的对这个简单的 图遍历问题/图遍历算法 的 变种/改变。你可以使用或者修改我们的DFS/BFS的源代码:dfs_cc.cpp/bfs.cpp dfs_cc.java/bfs.java dfs_cc.py/bfs.py dfs_cc.ml/bfs.ml

🕑

The content of this interesting slide (the answer of the usually intriguing discussion point from the earlier slide) is hidden and only available for legitimate CS lecturer worldwide. This mechanism is used in the various flipped classrooms in NUS.


If you are really a CS lecturer (or an IT teacher) (outside of NUS) and are interested to know the answers, please drop an email to stevenhalim at gmail dot com (show your University staff profile/relevant proof to Steven) for Steven to manually activate this CS lecturer-only feature for you.


FAQ: This feature will NOT be given to anyone else who is not a CS lecturer.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Visualisation Scale

Toggle V. Number for 0.5x

编辑图表

Input Graph

图示

深度优先搜索

广度优先搜说

拓扑排序

二分图检查

切断顶点/ 桥

SCC 算法

2-SAT 检查

>

1.0x (Default)

0.5x (Minimal Details)

CP3 4.1

CP3 4.3

CP3 4.4 DAG

CP3 4.9

CP3 4.17 DAG

CP3 4.18 DAG, Bipartite

CP3 4.19 Bipartite

Large Graph

Large, Cycles

s =

前进

s =

前进

DFS 版本

BFS 版本 (Kahn's 算法)

DFS 版本

BFS 版本

Kosaraju 算法

Tarjan 算法

条款的数量 =
变量的数量 =

关于 团队 使用条款
隐私政策

关于

VisuAlgo最初由副教授Steven Halim于2011年构思,旨在通过提供自学、互动式学习平台,帮助学生更深入地理解数据结构和算法。

VisuAlgo涵盖了Steven Halim博士与Felix Halim博士、Suhendry Effendy博士合著的书《竞技编程》中讨论的许多高级算法。即使过去十年,VisuAlgo仍然是可视化和动画化这些复杂算法的独家平台。

虽然VisuAlgo主要面向新加坡国立大学(NUS)的学生,包括各种数据结构和算法课程(例如CS1010/等价课程,CS2040/等价课程(包括IT5003),CS3230,CS3233和CS4234),但它也是全球好奇心的宝贵资源,促进在线学习。

最初,VisuAlgo并不适用于智能手机等小触摸屏,因为复杂的算法可视化需要大量的像素空间和点击拖动交互。为了获得最佳用户体验,建议使用最低分辨率为1366x768的屏幕。然而,自2022年4月以来,VisuAlgo的移动(精简)版本已经推出,使得在智能手机屏幕上使用VisuAlgo的部分功能成为可能。

VisuAlgo仍然在不断发展中,正在开发更复杂的可视化。目前,该平台拥有24个可视化模块。

VisuAlgo配备了内置的问题生成器和答案验证器,其“在线测验系统”使学生能够测试他们对基本数据结构和算法的理解。问题根据特定规则随机生成,并且学生提交答案后会自动得到评分。随着越来越多的计算机科学教师在全球范围内采用这种在线测验系统,它可以有效地消除许多大学标准计算机科学考试中手工基本数据结构和算法问题。通过给通过在线测验的学生分配一个小但非零的权重,计算机科学教师可以显著提高学生对这些基本概念的掌握程度,因为他们可以在参加在线测验之前立即验证几乎无限数量的练习题。每个VisuAlgo可视化模块现在都包含自己的在线测验组件。

VisuAlgo已经被翻译成三种主要语言:英语、中文和印尼语。此外,我们还用各种语言撰写了关于VisuAlgo的公开笔记,包括印尼语、韩语、越南语和泰语:

id, kr, vn, th.

团队

项目领导和顾问(2011年7月至今)
Associate Professor Steven Halim, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

本科生研究人员 1
CDTL TEG 1: Jul 2011-Apr 2012: Koh Zi Chun, Victor Loh Bo Huai

最后一年项目/ UROP学生 1
Jul 2012-Dec 2013: Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy
Jun 2013-Apr 2014 Rose Marie Tan Zhao Yun, Ivan Reinaldo

本科生研究人员 2
CDTL TEG 2: May 2014-Jul 2014: Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

最后一年项目/ UROP学生 2
Jun 2014-Apr 2015: Erin Teo Yi Ling, Wang Zi
Jun 2016-Dec 2017: Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir
Aug 2021-Apr 2023: Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long, Ting Xiao, Lim Dewen Aloysius

本科生研究人员 3
Optiver: Aug 2023-Oct 2023: Bui Hong Duc, Oleh Naver, Tay Ngan Lin

最后一年项目/ UROP学生 3
Aug 2023-Apr 2024: Xiong Jingya, Radian Krisno, Ng Wee Han, Tan Chee Heng
Aug 2024-Apr 2025: Edbert Geraldy Cangdinata, Huang Xing Chen, Nicholas Patrick

List of translators who have contributed ≥ 100 translations can be found at statistics page.

致谢
NUS教学与学习发展中心(CDTL)授予拨款以启动这个项目。在2023/24学年,Optiver的慷慨捐赠将被用来进一步开发 VisuAlgo。

使用条款

VisuAlgo慷慨地向全球计算机科学界提供免费服务。如果您喜欢VisuAlgo,我们恳请您向其他计算机科学学生和教师宣传它的存在。您可以通过社交媒体平台(如Facebook、YouTube、Instagram、TikTok、Twitter等)、课程网页、博客评论、电子邮件等方式分享VisuAlgo。

数据结构与算法(DSA)的学生和教师可以直接在课堂上使用本网站。如果您从本网站截取屏幕截图或视频,可以在其他地方使用,但请引用本网站的URL(https://visualgo.net)和/或下面的出版物列表作为参考。但请不要下载VisuAlgo的客户端文件并将其托管在您的网站上,因为这构成了抄袭行为。目前,我们不允许他人分叉此项目或创建VisuAlgo的变体。个人使用离线副本的客户端VisuAlgo是可以接受的。

请注意,VisuAlgo的在线测验组件具有重要的服务器端元素,保存服务器端脚本和数据库并不容易。目前,普通公众只能通过“培训模式”访问在线测验系统。“测试模式”提供了一个更受控制的环境,用于在新加坡国立大学的真实考试中使用随机生成的问题和自动验证。


出版物列表

这项工作曾在2012年国际大学生程序设计竞赛(波兰,华沙)的CLI研讨会上和2012年国际信息学奥林匹克竞赛(意大利,锡尔米奥内-蒙蒂基亚里)的IOI会议上展示过。您可以点击此链接阅读我们2012年关于该系统的论文(当时还没有称为VisuAlgo),以及此链接阅读2015年的简短更新(将VisuAlgo与之前的项目关联起来)。


错误报告或新功能请求

VisuAlgo并不是一个完成的项目。Steven Halim副教授仍在积极改进VisuAlgo。如果您在使用VisuAlgo时发现任何可视化页面/在线测验工具中的错误,或者您想要请求新功能,请联系Steven Halim副教授。他的联系方式是将他的名字连接起来,然后加上gmail dot com。

隐私政策

版本 1.2 (更新于2023年8月18日星期五)。

自2023年8月18日(星期五)起,我们不再使用 Google Analytics。因此,我们现在使用的所有 cookies 仅用于此网站的运营。即使是首次访问的用户,烦人的 cookie 同意弹窗现在也已关闭。

自2023年6月7日(星期五)起,由于 Optiver 的慷慨捐赠,全世界的任何人都可以自行创建一个 VisuAlgo 账户,以存储一些自定义设置(例如,布局模式,默认语言,播放速度等)。

此外,对于 NUS 学生,通过使用 VisuAlgo 账户(一个 NUS 官方电子邮件地址,课堂名册中的学生姓名,以及在服务器端加密的密码 - 不存储其他个人数据),您同意您的课程讲师跟踪您的电子讲义阅读和在线测验培训进度,这是顺利进行课程所必需的。您的 VisuAlgo 账户也将用于参加 NUS 官方的 VisuAlgo 在线测验,因此,将您的账户凭据传递给他人代您进行在线测验构成学术违规。课程结束后,您的用户账户将被清除,除非您选择保留您的账户(OPT-IN)。访问完整的 VisuAlgo 数据库(包含加密密码)的权限仅限于 Halim 教授本人。

对于全球其他已经给 Steven 写过信的 CS 讲师,需要一个 VisuAlgo 账户(您的(非 NUS)电子邮件地址,您可以使用任何显示名称,以及加密密码)来区分您的在线凭据与世界其他地方。您的账户将具有 CS 讲师特定的功能,即能够查看隐藏的幻灯片,这些幻灯片包含了在隐藏幻灯片之前的幻灯片中提出的问题的(有趣的)答案。您还可以访问 VisuAlgo 在线测验的 Hard 设置。您可以自由地使用这些材料来增强您的数据结构和算法课程。请注意,未来可能会有其他 CS 讲师特定的功能。

对于任何拥有 VisuAlgo 账户的人,如果您希望不再与 VisuAlgo 工具有关联,您可以自行删除您的账户。