>

>
1x
go to beginning previous frame pause play next frame go to end

A Binary Indexed (Fenwick) Tree is a data structure that provides efficient methods for implementing dynamic cumulative frequency tables.


This Fenwick Tree data structure uses many bit manipulation techniques. In this visualization, we will refer to this data structure using the term Fenwick Tree as the abbreviation 'BIT' of Binary Indexed Tree is usually associated with the usual bit manipulation.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

Suppose that we have a multiset of integers s = {2,4,5,6,5,6,8,6,7,9,7} (not necessarily sorted). There are m = 11 elements in s. Also suppose that the largest integer that we will ever use is n = 10 and we never use integer 0. For example, these integers represent student (integer) scores from [1..10]. Notice that m is independent of n.


We can create a frequency table f from s with a trivial O(m) time loop. We can then create cumulative frequency table cf from frequency table f in O(n) time using technique similar to DP 1D prefix sum.


Index/Score/SymbolFrequency fCumulative Frequency cf
0-- (index 0 is ignored)
100
211
301
412
524 == cf[4]+f[5]
637 == cf[5]+f[6]
729
8110
9111
10 == n011 == m

Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

With such cumulative frequency table cf, we can perform Range Sum Query: rsq(i, j) to return the sum of frequencies between index i and j (inclusive), in efficient O(1) time, again using the DP 1D prefix sum (i.e., the inclusion-exclusion principle). For example, rsq(5, 9) = rsq(1, 9) - rsq(1, 4) = 11-2 = 9.


Index/Score/SymbolFrequency fCumulative Frequency cf
0-- (index 0 is ignored)
100
211
301
412 == rsq(1, 4)
524
637
729
8110
9111 == rsq(1, 9)
10 == n011 == m

Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

A dynamic data structure need to support (frequent) updates in between queries. For example, we may update (add) the frequency of score 7 from 2 → 5 and update (subtract) the frequency of score 9 from 1 → 0, thereby updating the table into:


Index/Score/SymbolFrequency fCumulative Frequency cf
0-- (index 0 is ignored)
100
211
301
412
524
637
72 → 59 → 12
8110 → 13
91 → 011 → 13
10 == n011 → 13 == m

A pure array based data structure will need O(n) per update operation. Can we do better?


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

Introducing: Fenwick Tree data structure.


There are three mode of usages of Fenwick Tree in this visualization.


The first mode is the default Fenwick Tree that can handle both Point Update (PU) and Range Query (RQ) in O(log n) where n is the largest index/key in the data structure. Remember that the actual number of keys in the data structure is denoted by another variable m. We abbreviate this default type as PU RQ that simply stands for Point Update Range Query.


This clever arrangement of integer keys idea is the one that originally appears in Peter M. Fenwick's 1994 paper.

🕑

You can click the 'Create' menu to create a frequency array f where f[i] denotes the frequency of appearance of key i in our original array of keys s.


IMPORTANT: This frequency array f is not the original array of keys s. For example, if you enter {0,1,0,1,2,3,2,1,1,0}, it means that you are creating 0 one, 1 two, 0 three, 1 four, ..., 0 ten (1-based indexing). The largest index/integer key is n = 10 in this example as in the earlier slides.


If you have the original array s of m elements, e.g., {2,4,5,6,5,6,8,6,7,9,7} from earlier slides (s does not need to be necessarily sorted), you can do an O(m) pass to convert s into frequency table f of n indices/integer keys. (We will provide this alternative input method in the near future).


You can click the 'Randomize' button to generate random frequencies.

🕑

Although conceptually this data structure is a tree, it will be implemented as an integer array called ft that ranges from index 1 to index n (we sacrifice index 0 of our ft array). The values inside the vertices of the Fenwick Tree shown above are the values stored in the 1-based Fenwick Tree ft array.

🕑

The values inside the vertices at the bottom are the values of the data (the frequency array f).

🕑

The value stored in index i in array ft, i.e., ft[i] is the cumulative frequency of keys in range [i-LSOne(i)+1 .. i]. Visually, this range is shown by the edges of the Fenwick Tree. For details of LSOne(i) operation, see our bitmask visualization page.

🕑

The function rsq(j) returns the cumulative frequencies from the first index 1 (ignoring index 0) to index j.


This value is the sum of sub-frequencies stored in array ft with indices related to j via this formula j' = j-LSOne(j). This relationship forms a Fenwick Tree, specifically, the 'interrogation tree' of Fenwick Tree.


We apply this formula iteratively until j is 0. (We will add that dummy vertex 0 later).


Discussion: Do you understand what does this function compute?


This function runs is O(log n), regardless of m. Discussion: Why?

🕑

rsq(i, j) returns the cumulative frequencies from index i to j, inclusive.


If i = 1, the previous slide is sufficient.
If i > 1, we simply need to return: rsq(j)–rsq(i–1).


Discussion: Do you understand the reason?


This function also runs in O(log n), regardless of m. Discussion: Why?

🕑

To update the frequency of a key (an index) i by v (v is either positive or negative; |v| does not necessarily be one), we use update(i, v).


Indices that are related to i via i' = i+LSOne(i) will be updated by v when i < ft.size() (Note that ft.size() is N+1 (as we ignore index 0). These relationships form a variant of Fenwick Tree structure called the 'updating tree'.


Discussion: Do you understand this operation and on why we avoided index 0?


This function also runs in O(log n), regardless of m. Discussion: Why?

🕑

Mode kedua dari Pohon Fenwick ini adalah mode yang dapat melakukan Range Update (RU) tetapi hanya dapat melakukan Point Query (PQ) dalam O(log N).


Kita menyingkat tipe ini sebagai RU PQ.

🕑
Buatlah sebuah array dan cobalah jalankan algoritma Update Range atau Query Point padanya. Pembuatan data untuk tipe ini berarti memasukkan beberapa interval. Sebagai contoh, juka anda memasukkan [2,4],[3,5], itu berarti kita meng-update range 2 hingga 4 dengan +1 serta range 3 hingga 5 dengan +1 pula. Frekuensi yang dihasilkan adalah: 0,1,2,2,1 yang berarti 0 nilai 1, 1 nilai 2, 2 nilai 3, 2 nilai 4, dan 1 nilai 5.
🕑

Simpul-simpul diatas menunjukan nilai-nilai yang disimpan dalam Pohon Fenwick (larik ft).


Simpul-simpul dibawah menunjukkan nilai-nilai dari data (tabel frekuensi f).


Catat modifikasi pintar dari Pohon Fenwick yang digunakan dalam tipe RU PQ ini: Kita menambah awal dari range sebesar +1 tetapi mengurangi satu indeks setelah akhir dari range sebesar -1 untuk mencapai hasil ini.

🕑

Mode ketiga dari Pohon Fenwick ini adalah mode yang dapat melakukan Range Update (RU) dan Range Query (RQ) dalam O(log N), sehingga mode ini berjalan se-efisien Pohon Segmen dengan Lazy Update yang juga dapat melakukan RU RQ dalam O(log N).

🕑

Buatlah datanya dan coba jalankan algoritma Range Update atau Range Query pada data tersebut.


Pembuatan data dapat dilakukan dengan memasukkan beberapa interval seperti dalam versi RU PQ. Namun, kali ini anda juga melakukan Range Query secara efisien.

🕑

In Range Update Range Query Fenwick Tree, we need to have two Fenwick Trees. The vertices at the top shows the values of the first Fenwick Tree (BIT1[] array), the vertices at the middle shows the values of the second Fenwick Tree (BIT2[] array), while the vertices at the bottom shows the values of the data (the frequency table). The first Fenwick Tree behaves the same as in RU PQ version. The second Fenwick Tree is used to do clever offset to allow Range Query again.

🕑
Kita memiliki beberapa hal-hal ekstra berhubungan dengan struktur data ini.
🕑

Unfortunately, this data structure is not yet available in C++ STL, Java API, Python or OCaml Standard Library as of 2020. Therefore, we have to write our own implementation.


Please look at the following C++/Python/Java/OCaml implementations of this Fenwick Tree data structure in Object-Oriented Programming (OOP) fashion:
fenwicktree_ds.cpp | py | java | ml


Again, you are free to customize this custom library implementation to suit your needs.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Buat

RSQ / Query

Update(pos, delta)

>
arr =

Lakukan

Buat acak

L =
R =

Lakukan

pos =

Lakukan

L =
R =

Lakukan

pos =
delta =

Lakukan

L =
R =
delta =
L =
R =
delta =

Lakukan

Lakukan

We use cookies to improve our website.
By clicking ACCEPT, you agree to our use of Google Analytics for analysing user behaviour and improving user experience as described in our Privacy Policy.
By clicking reject, only cookies necessary for site functions will be used.

ACCEPT REJECT
Tentang Tim Syarat Guna Kebijakan Privasi

Tentang

VisuAlgo digagas pada tahun 2011 oleh Dr Steven Halim sebagai alat untuk membantu murid-muridnya mengerti struktur-struktur data dan algoritma-algoritma, dengan memampukan mereka untuk mempelajari dasar-dasarnya secara otodidak dan dengan kecepatan mereka sendiri.


VisuAlgo mempunya banyak algoritma-algoritma tingkat lanjut yang dibahas didalam buku Dr Steven Halim ('Competitive Programming', yang ditulis bersama adiknya Dr Felix Halim dan temannya Dr Suhendry Effendy) dan lebih lagi. Hari ini, beberapa dari visualisasi/animasi algoritma-algoritma tingkat lanjut ini hanya ditemukan di VisuAlgo.


Meskipun pada khususnya didesain untuk murid-murid National University of Singapore (NUS) yang mengambil berbagai kelas-kelas struktur data dan algoritma (contoh: CS1010/setara, CS2040/setara, CS3230, CS3233, dan CS4234), sebagai pendukung pembelajaran online, kami berharap bahwa orang-orang di berbagai belahan dunia menemukan visualisasi-visualisasi di website ini berguna bagi mereka juga.


VisuAlgo tidak didesain untuk layar sentuh kecil (seperti smartphones) dari awalnya karena kami harus membuat banyak visualisasi-visualisasi algoritma kompleks yang membutuhkan banyak pixels dan gestur klik-dan-tarik untuk interaksinya. Resolusi layar minimum untuk pengalaman pengguna yang lumayan adalah 1024x768 dan hanya halaman utama VisuAlgo yang secara relatif lebih ramah dengan layar kecil. Tetapi, kami sedang bereksperimen dengan versi mobil (kecil) dari VisuAlgo yang akan siap pada April 2022.


VisuAlgo adalah proyek yang sedang terus berlangsung dan visualisasi-visualisasi yang lebih kompleks sedang dibuat.


Perkembangan yang paling menarik adalah pembuatan pertanyaan otomatis (sistem kuis online) yang bisa dipakai oleh murid-murid untuk menguji pengetahuan mereka tentang dasar struktur-struktur data dan algoritma-algoritma. Pertanyaan-pertanyaan dibuat secara acak dengan semacam rumus dan jawaban-jawaban murid-murid dinilai secara instan setelah dikirim ke server penilai kami. Sistem kuis online ini, saat sudah diadopsi oleh banyak dosen Ilmu Komputer diseluruh dunia, seharusnya bisa menghapuskan pertanyaan-pertanyaan dasar tentang struktur data dan algoritma dari ujian-ujian di banyak Universitas. Dengan memberikan bobot kecil (tapi tidak kosong) supaya murid-murid mengerjakan kuis online ini, seorang dosen Ilmu Komputer dapat dengan signifikan meningkatkan penguasaan materi dari murid-muridnya tentang pertanyaan-pertanyaan dasar ini karena murid-murid mempunyai kesempatan untuk menjawab pertanyaan-pertanyaan ini yang bisa dinilai secara instan sebelum mereka mengambil kuis online yang resmi. Mode latihan saat ini mempunyai pertanyaan-pertanyaan untuk 12 modul visualisasi. Kami akan segera menambahkan pertanyaan-pertanyaan untuk 12 modul visualisasi yang lainnya sehingga setiap setiap modul visualisasi di VisuAlgo mempunyai komponen kuis online.


Kami telah menerjemahkan halaman-halaman VisuALgo ke tiga bahasa-bahasa utama: Inggris, Mandarin, dan Indonesia. Saat ini, kami juga telah menulis catatan-catatan publik tentang VisuAlgo dalam berbagai bahasa:

id, kr, vn, th.

Tim

Pemimpin & Penasihat Proyek (Jul 2011-sekarang)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

Murid-Murid S1 Peniliti 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Murid-Murid Proyek Tahun Terakhir/UROP 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Murid-Murid Proyek Tahun Terakhir/UROP 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Murid-Murid S1 Peniliti 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Murid-Murid Proyek Tahun Terakhir/UROP 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Murid-Murid Proyek Tahun Terakhir/UROP 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

Murid-Murid Proyek Tahun Terakhir/UROP 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

List of translators who have contributed ≥100 translations can be found at statistics page.

Ucapan Terima Kasih
Proyek ini dimungkinkan karena Hibah Pengembangan Pengajaran dari NUS Centre for Development of Teaching and Learning (CDTL).

Syarat Guna

VisuAlgo is free of charge for Computer Science community on earth. If you like VisuAlgo, the only "payment" that we ask of you is for you to tell the existence of VisuAlgo to other Computer Science students/instructors that you know =) via Facebook/Twitter/Instagram/TikTok posts, course webpages, blog reviews, emails, etc.

If you are a data structure and algorithm student/instructor, you are allowed to use this website directly for your classes. If you take screen shots (videos) from this website, you can use the screen shots (videos) elsewhere as long as you cite the URL of this website (https://visualgo.net) and/or list of publications below as reference. However, you are NOT allowed to download VisuAlgo (client-side) files and host it on your own website as it is plagiarism. As of now, we do NOT allow other people to fork this project and create variants of VisuAlgo. Using the offline copy of (client-side) VisuAlgo for your personal usage is fine.

Note that VisuAlgo's online quiz component is by nature has heavy server-side component and there is no easy way to save the server-side scripts and databases locally. Currently, the general public can only use the 'training mode' to access these online quiz system. Currently the 'test mode' is a more controlled environment for using these randomly generated questions and automatic verification for real examinations in NUS.

List of Publications

This work has been presented briefly at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

This work is done mostly by my past students. 

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

Kebijakan Privasi

Versi 1.1 (Dimutakhirkan Jum, 14 Jan 2022).

Pemberitahuan kepada semua pengunjung: Kami saat ini menggunakan Google Analytics untuk mendapatkan pengertian garis besar tentang pengunjung-pengunjung situs kami. Kami sekarang memberikan opsi kepada pengguna untuk Menerima atau Menolak pelacak ini.

Sejak Rabu, 22 Des 2021, hanya staff-staff/murid-murid National University of Singapore (NUS) dan dosen-dosen Ilmu Komputer diluar dari NUS yang telah menulis kepada Steven dapat login ke VisuAlgo, orang-orang lain di dunia harus memakai VisuAlgo sebagai pengguna anonim yang tidak benar-benar terlacak selain apa yang dilacak oleh Google Analytics.

Untuk murid-murid NUS yang mengambil mata kuliah yang menggunakan VisuAlgo: Dengan menggunakan akun VisuAlgo (sebuah tupel dari alamat email NUS resmi, nama murid resmi NUS seperti dalam daftar kelas, dan sebuah kata sandi yang dienkripsi pada sisi server — tidak ada data personal lainnya yang disimpan), anda memberikan ijin kepada dosen modul anda untuk melacak pembacaan slide-slide kuliah maya dan kemajuan latihan kuis online yang dibutuhkan untuk menjalankan modul tersebut dengan lancar. Akun VisuAlgo anda akan juga dibutuhkan untuk mengambil kuis-kuis VisuAlgo online resmi sehingga memberikan kredensial akun anda ke orang lain untuk mengerjakan Kuis Online sebagai anda adalah pelanggaran akademis.. Akun pengguna anda akan dihapus setelah modul tersebut selesai kecuali anda memilih untuk menyimpan akun anda (OPT-IN). Akses ke basis data lengkap dari VisuAlgo (dengan kata-kata sandi terenkripsi) dibatasi kepada Steven saja.

Untuk murid-murid NUS lainnya, anda dapat mendaftarkan sendiri sebuah akun VisuAlgo (OPT-IN).

Untuk dosen-dosen Ilmu Komputer di seluruh dunia yang telah menulis kepada Steven, sebuah akun VisuAlgo (alamat email (bukan-NUS), anda dapat menggunakan nama panggilan apapun, dan kata sandi terenkripsi) dibutuhkan untuk membedakan kredensial online anda dibandingkan dengan orang-orang lain di dunia. Akun anda akan dilacak seperti seorang murid NUS biasa diatas tetapi akun anda akan mempunya fitur-fiture spesifik untuk dosen-dosen Ilmu Komputer, yaitu kemampuan untuk melihat slide-slide tersembunyi yang berisi jawaban-jawaban (menarik) dari pertanyaan-pertanyaan yang dipresentasikan di slide-slide sebelumnya sebelum slide-slide tersembunyi tersebut. Anda juga dapat mengakses setingan Susah dari Kuis-Kuis Online VisuAlgo. Anda dapat dengan bebas menggunakan materi-materia untuk memperkaya kelas-kelas struktur-struktur data dan algoritma-algoritma anda. Catatan: Mungkin ada fitur-fitur khusus tambahan untuk dosen Ilmu Komputer di masa mendatang.

Untuk siapapun dengan akun VisuAlgo, anda dapat membuang akun anda sendiri bila anda tidak mau lagi diasosiasikan dengan tool VisuAlgo ini.