1x

Assume that you have a function f: S → S and any initial value x0 ∈ S
(in this visualization, we are restricted to f(x) = (A*x^2 + B*x + C) % M and x0 % M hence the function f has domain and range ∈ [0..M-1]).

The sequence of iterated function values:
{x0, x1 = f(x0), x2 = f(x1), ..., xi = f(xi-1), ...}
must eventually use the same value twice (cycle), i.e. a ≠ b such that xa = xb.
Afterwards, the sequence must continue by repeating the cycle of values from xa to xb-1.

Let mu (μ) be the smallest index and let lambda (λ) (the cycle length) be the smallest positive integer such that xμ = xμ+λ.

The cycle-finding problem: Find such μ and λ, given f and x0.

Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

You can define custom function f(x) = (A*x2 + B*x + C) % M here.

1. Random: The function will be f(x) = (x2 - 1) % M and only M and the x0 are randomly generated.
2. Custom: You can specify the coefficients A, B, C of f(x) (ranging from -999 to 999), the modulo value M (ranging from 10 to 1000) and the initial value x0 (ranging from 0 to M-1).

You can also set custom x0, which must be ∈ [0..M-1].

Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

Floyd's Tortoise-Hare Cycle-Finding is one algorithm that can solve this problem efficiently in both time and space complexities.

It just requires O(μ+λ) time and O(1) space to do the job.

Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

This is the visualization of Floyd's Tortoise-Hare Cycle-Finding algorithm.

The shape of rho (ρ) of the sequence of iterated function values defined by f(x) and x0 nicely visualizes μ and λ.

VisuAlgo uses green vertices to represent the tortoise (t) and orange vertices to represent the hare (h).

Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

We start from x0.

While tortoise's pointer != hare's pointer, we advance tortoise/hare by one step/two steps to their next values by calling f(tortoise)/f(f(hare)).

🕑

We reset hare back to x0 and keep tortoise at its current position.

Then, we iteratively advance both pointers to their next values by one step as this maintains the gap of tortoise and hare by .

The first time both pointers are equal tells us the value of μ.

🕑

Again, we let tortoise stays in its current position and set hare next to it.

Then, we iteratively move hare to the next value by one step.

The first time both pointers are equal tells us the value of λ.

🕑

The animation of this algorithm should clear up most questions involving this algorithm.

🕑

You are allowed to use/modify our implementation code for Floyd Cycle-Finding Algorithm:
UVa00350.cpp
UVa00350.java
UVa00350.py
UVa00350.ml

You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Random

Custom(a, b, c, m, z0)

>
a =
b =
c =
m =
x0 =

Go

We use cookies to improve our website.
By clicking ACCEPT, you agree to our use of Google Analytics for analysing user behaviour and improving user experience as described in our Privacy Policy.
By clicking reject, only cookies necessary for site functions will be used.

Initially conceived in 2011 by Dr. Steven Halim, VisuAlgo aimed to facilitate a deeper understanding of data structures and algorithms for his students by providing a self-paced, interactive learning platform.

Featuring numerous advanced algorithms discussed in Dr. Steven Halim's book, 'Competitive Programming' — co-authored with Dr. Felix Halim and Dr. Suhendry Effendy — VisuAlgo remains the exclusive platform for visualizing and animating several of these complex algorithms even after a decade.

While primarily designed for National University of Singapore (NUS) students enrolled in various data structure and algorithm courses (e.g., CS1010/equivalent, CS2040/equivalent (including IT5003), CS3230, CS3233, and CS4234), VisuAlgo also serves as a valuable resource for inquisitive minds worldwide, promoting online learning.

Initially, VisuAlgo was not designed for small touch screens like smartphones, as intricate algorithm visualizations required substantial pixel space and click-and-drag interactions. For an optimal user experience, a minimum screen resolution of 1366x768 is recommended. However, since April 2022, a mobile (lite) version of VisuAlgo has been made available, making it possible to use a subset of VisuAlgo features on smartphone screens.

VisuAlgo remains a work in progress, with the ongoing development of more complex visualizations. At present, the platform features 24 visualization modules.

Equipped with a built-in question generator and answer verifier, VisuAlgo's "online quiz system" enables students to test their knowledge of basic data structures and algorithms. Questions are randomly generated based on specific rules, and students' answers are automatically graded upon submission to our grading server. As more CS instructors adopt this online quiz system worldwide, it could effectively eliminate manual basic data structure and algorithm questions from standard Computer Science exams in many universities. By assigning a small (but non-zero) weight to passing the online quiz, CS instructors can significantly enhance their students' mastery of these basic concepts, as they have access to an almost unlimited number of practice questions that can be instantly verified before taking the online quiz. Each VisuAlgo visualization module now includes its own online quiz component.

VisuAlgo has been translated into three primary languages: English, Chinese, and Indonesian. Additionally, we have authored public notes about VisuAlgo in various languages, including Indonesian, Korean, Vietnamese, and Thai:

id, kr, vn, th.

#### Team

Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

Undergraduate Student Researchers 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Final Year Project/UROP students 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Final Year Project/UROP students 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Undergraduate Student Researchers 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Final Year Project/UROP students 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Final Year Project/UROP students 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

Final Year Project/UROP students 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

Final Year Project/UROP students 6 (Aug 2022-Apr 2023)
Lim Dewen Aloysius, Ting Xiao

Final Year Project/UROP students 7 (Aug 2023-Apr 2024)
TBA1, TBA2, TBA3

List of translators who have contributed ≥100 translations can be found at statistics page.

Acknowledgements
The birth of this project was made possible by the generous Teaching Enhancement Grant from NUS Centre for Development of Teaching and Learning (CDTL).

VisuAlgo is generously offered at no cost to the global Computer Science community. If you appreciate VisuAlgo, we kindly request that you spread the word about its existence to fellow Computer Science students and instructors. You can share VisuAlgo through social media platforms (e.g., Facebook, YouTube, Instagram, TikTok, Twitter, etc), course webpages, blog reviews, emails, and more.

Data Structures and Algorithms (DSA) students and instructors are welcome to use this website directly for their classes. If you capture screenshots or videos from this site, feel free to use them elsewhere, provided that you cite the URL of this website (https://visualgo.net) and/or the list of publications below as references. However, please refrain from downloading VisuAlgo's client-side files and hosting them on your website, as this constitutes plagiarism. At this time, we do not permit others to fork this project or create VisuAlgo variants. Personal use of an offline copy of the client-side VisuAlgo is acceptable.

Please note that VisuAlgo's online quiz component has a substantial server-side element, and it is not easy to save server-side scripts and databases locally. Currently, the general public can access the online quiz system only through the 'training mode.' The 'test mode' offers a more controlled environment for using randomly generated questions and automatic verification in real examinations at NUS.

List of Publications

This work has been presented at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

Version 1.1 (Updated Fri, 14 Jan 2022).

Disclosure to all visitors: We currently use Google Analytics to get an overview understanding of our site visitors. We now give option for user to Accept or Reject this tracker.

Since Wed, 22 Dec 2021, only National University of Singapore (NUS) staffs/students and approved CS lecturers outside of NUS who have written a request to Steven can login to VisuAlgo, anyone else in the world will have to use VisuAlgo as an anonymous user that is not really trackable other than what are tracked by Google Analytics.