Erkundungsmodus

langsam
schnell

A Binary Indexed (Fenwick) Tree is a data structure that provides efficient methods for implementing dynamic cumulative frequency tables (described in the next slide).

In this visualization, we will refer to this data structure using the term Fenwick Tree as the abbreviation 'BIT' of Binary Indexed Tree is usually associated with bit manipulation.

Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.

X Esc
Weiter
PgDn

Suppose that we have a multiset of integers s = {2,4,5,6,5,6,8,6,7,9,7} (not necessarily sorted). There are m = 11 elements in s. Also suppose that the largest integer that we will ever use is n = 10 and we never use integer 0. For example, these integers represent student (integer) scores from [1..10]. Notice that m is independent of n.

We can create a frequency table f from s with a trivial O(m) time loop. We can then create cumulative frequency table cf from frequency table f in O(n) time using technique similar to DP 1D prefix sum.

Index/Score/SymbolFrequency fCumulative Frequency cf
0-- (index 0 is ignored)
100
211
301
412
524 == cf[4]+f[5]
637 == cf[5]+f[6]
729
8110
9111
10 == n011 == m

Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Zurück
PgUp
Weiter
PgDn

With such cumulative frequency table cf, we can perform Range Sum Query: rsq(i, j) to return the sum of frequencies between index i and j (inclusive), in efficient O(1) time, again using the DP 1D prefix sum (i.e. the inclusion-exclusion principle). For example, rsq(5, 9) = rsq(1, 9) - rsq(1, 4) = 11-2 = 9.

Index/Score/SymbolFrequency fCumulative Frequency cf
0-- (index 0 is ignored)
100
211
301
412 == rsq(1, 4)
524
637
729
8110
9111 == rsq(1, 9)
10 == n011 == m

Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Zurück
PgUp
Weiter
PgDn

A dynamic data structure need to support (frequent) updates in between queries. For example, we may update (add) the frequency of score 7 from 2 → 5 and update (subtract) the frequency of score 9 from 1 → 0, thereby updating the table into:

Index/Score/SymbolFrequency fCumulative Frequency cf
0-- (index 0 is ignored)
100
211
301
412
524
637
72 → 59 → 12
8110 → 13
91 → 011 → 13
10 == n011 → 13 == m

A pure array based data structure will need O(n) per update operation. Can we do better?

X Esc
Zurück
PgUp
Weiter
PgDn

Introducing: Fenwick Tree data structure.

There are three mode of usages of Fenwick Tree in this visualization.

The first mode is the default Fenwick Tree that can handle both Point Update (PU) and Range Query (RQ) in O(log n) where n is the largest index/key in the data structure. Remember that the actual number of keys in the data structure is denoted by another variable m. We abbreviate this default type as PU RQ that simply stands for Point Update Range Query.

This clever arrangement of integer keys idea is the one that originally appears in Peter M. Fenwick's 1994 paper.

X Esc
Zurück
PgUp
Weiter
PgDn

You can click the 'Create' menu to create a frequency array f where f[i] denotes the frequency of appearance of key i in our original array of keys s.

IMPORTANT: This frequency array f is not the original array of keys s. For example, if you enter {0,1,0,1,2,3,2,1,1,0}, it means that you are creating 0 one, 1 two, 0 three, 1 four, ..., 0 ten (1-based indexing). The largest index/integer key is n = 10 in this example as in the earlier slides.

If you have the original array s of m elements, e.g. {2,4,5,6,5,6,8,6,7,9,7} from earlier slides (s does not need to be necessarily sorted), you can do an O(m) pass to convert s into frequency table f of n indices/integer keys. (We will provide this alternative input method in the near future).

You can click the 'Randomize' button to generate random frequencies.

X Esc
Zurück
PgUp
Weiter
PgDn

Although conceptually this data structure is a tree, it will be implemented as an integer array called ft that ranges from index 1 to index n (we sacrifice index 0 of our ft array) The values inside the vertices of the Fenwick Tree shown above are the values stored in the 1-based Fenwick Tree ft array.

X Esc
Zurück
PgUp
Weiter
PgDn

The values inside the vertices at the bottom are the values of the data (the frequency array f).

X Esc
Zurück
PgUp
Weiter
PgDn

The value stored in index i in array ft, i.e. ft[i] is the cumulative frequency of keys in range [i-LSOne(i)+1 .. i]. Visually, this range is shown by the edges of the Fenwick Tree. For details of LSOne(i) operation, see our bitmask visualization page.

X Esc
Zurück
PgUp
Weiter
PgDn

The function rsq(j) returns the cumulative frequencies from the first index 1 (ignoring index 0) to index j.

This value is the sum of sub-frequencies stored in array ft with indices related to j via this formula j' = j-LSOne(j). This relationship forms a Fenwick Tree, specifically, the 'interrogation tree' of Fenwick Tree.

We apply this formula iteratively until j is 0. (We will add that dummy vertex 0 later).

Discussion: Do you understand what does this function compute?

This function runs is O(log n), regardless of m. Discussion: Why?

X Esc
Zurück
PgUp
Weiter
PgDn

rsq(i, j) returns the cumulative frequencies from index i to j, inclusive.

If i = 1, the previous slide is sufficient.
If i > 1, we simply need to return: rsq(j)–rsq(i–1).

Discussion: Do you understand the reason?

This function also runs in O(log n), regardless of m. Discussion: Why?

X Esc
Zurück
PgUp
Weiter
PgDn

To update the frequency of a key (an index) i by v (v is either positive or negative; |v| does not necessarily be one), we use update(i, v).

Indices that are related to i via i' = i+LSOne(i) will be updated by v when i < ft.size() (Note that ft.size() is N+1 (as we ignore index 0). These relationships form a variant of Fenwick Tree structure called the 'updating tree'.

Discussion: Do you understand this operation and on why we avoided index 0?

This function also runs in O(log n), regardless of m. Discussion: Why?

X Esc
Zurück
PgUp
Weiter
PgDn

The second mode of Fenwick Tree is the one that can handle Range Update (RU) but only able to handle Point Query (PQ) in O(log n).

We abbreviate this type as RU PQ.

X Esc
Zurück
PgUp
Weiter
PgDn

Create the data and try running the Range Update or Point Query algorithms on it. Creating the data for this type means inserting several intervals. For example, if you enter [2,4],[3,5], it means that we are updating range 2 to 4 by +1 and then updating range 3 to 5 by +1, thus we have the following frequency table: 0,1,2,2,1 that means 0 one, 1 two, 2 threes, 2 fours, 1 five.

X Esc
Zurück
PgUp
Weiter
PgDn

The vertices at the top shows the values stored in the Fenwick Tree (the ft array).

The vertices at the bottom shows the values of the data (the frequency table f).

Notice the clever modification of Fenwick Tree used in this RU PQ type: We increase the start of the range by +1 but decrease one index after the end of the range by -1 to achieve this result.

X Esc
Zurück
PgUp
Weiter
PgDn

The third mode of Fenwick Tree is the one that can handle both Range Update (RU) and Range Query (RQ) in O(log n), making this type on par with Segment Tree with Lazy Update that can also do RU RQ in O(log n).

X Esc
Zurück
PgUp
Weiter
PgDn

Create the data and try running the Range Update or Range Query algorithms on it.

Creating the data is inserting several intervals, similar as RU PQ version. But this time, you can also do Range Query efficiently.

X Esc
Zurück
PgUp
Weiter
PgDn

In Range Update Range Query Fenwick Tree, we need to have two Fenwick Trees. The vertices at the top shows the values of the first Fenwick Tree (BIT1[] array), the vertices at the middle shows the values of the second Fenwick Tree (BIT2[] array), while the vertices at the bottom shows the values of the data (the frequency table). The first Fenwick Tree behaves the same as in RU PQ version. The second Fenwick Tree is used to do clever offset to allow Range Query again.

X Esc
Zurück
PgUp
Weiter
PgDn

We have a few more extra stuffs involving this data structure.

X Esc
Zurück
PgUp
Weiter
PgDn

Unfortunately, this data structure is not yet available in C++ STL, Java API, Python or OCaml Standard Library as of 2020. Therefore, we have to write our own implementation.

Please look at the following C++/Java/Python/OCaml implementations of this Fenwick Tree data structure in Object-Oriented Programming (OOP) fashion:
fenwicktree_ds.cpp
fenwicktree_ds.java
fenwicktree_ds.py
fenwicktree_ds.ml

Again, you are free to customize this custom library implementation to suit your needs.

X Esc
Zurück
PgUp
Weiter
PgDn
Alle Schritte werden in der Status Anzeige erklärt während sie passieren
X Esc
Zurück
PgUp
Weiter
PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Zurück
PgUp
Weiter
PgDn
Kontrolliere die Animation mit Hilfe deiner Tastatur! Die Tasten sind:

Leertaste: start/stop/wiederholen
Pfeiltaste rechts/links: ein Schritt vor oder zurück
-/+: senke/erhöhe die Geschwindigkeit
X Esc
Zurück
PgUp
Weiter
PgDn
Kehre zum 'Exploration Mode' zurück und beginne zu Erforschen
X Esc
Zurück
PgUp

Erstellen

RSQ / Query

Aktualisieren

Gehen

Randomize

pos =

val +=

Gehen

L =

R =

Gehen

Gehen

Randomize

L =

R =

val +=

Gehen

pos =

Gehen

Gehen

Randomize

L =

R =

val +=

Gehen

L =

R =

Gehen

#### Über

VisuAlgo wurde konzeptioniert 2011 von Dr Steven Halim als ein Tool um seinen Studenten zu helfen Datenstrukturen und Algorithmen besser zu verstehen, indem sie die Grundlagen alleine und in ihrem eigenen Tempo lernen können.
VisuAlgo enthält viele fortgeschrittene Algorithmen die auch in Dr Steven Halim's Buch ('Competitive Programming', co-author ist sein Bruder Dr Felix Halim) und mehr. Heute, können die Visualisierungen/Animationen vieler fortgeschrittener Algorithmen nur auf VisoAlgo gefunden werden.
Obwohl die Visualisierungen speziell für die verschiedenen Datenstruktur und Algorithmik Kurse der National University of Singapore (NUS) gemacht sind, freuen wir uns, als Befürworter des Online Lernens, wenn auch andere neugierige Geister unsere Visualisierungen nützlich finden.
VisuAlgo ist nicht designed um gut auf kleinen Touchscreens (z,B, Smartphones) zu funktionieren, da die Darstellung komplexer Algorithmen viele Pixel benötigt und click-and-drag Aktionen zur Interaktion. Die minimale Bildschirmauflösung für ein akzeptables Benutz Erlebnis ist 1024x768 und nur die Startseite ist einigermaßen mobilfähig.
VisuAlgo ist ein laufendes Projekt und weitere komplexe Visualisierungen werden weiterhin entwickelt.
Die aufregendste Entwicklung ist der automatisierte Fragen Generator und Überprüfer (das Online Quiz System), dass Studenten erlaubt deren Wissen über grundlegende Datenstrukturen und Algorithmen zu testen. Die Fragen werden mit der Hilfe einiger Regeln zufällig generiert und die Antworten der Studenten werden automatisch von unserem Bewertungs Server bewertet. Das Online Quiz System, wenn es von mehr Informatik Tutoren übernommen wird, sollte eigentlich grundlegende Datenstrucktur- und Algorithmikfragen in Klausuren an vielen Universitäten ersetzten. Indem man ein wenig (allerdings nicht null) Gewicht darauf legt, dass das Online Quiz bestanden wird, kann ein Informatik Tutor (stark) das Können seiner Studenten was solche grundlegenden Fragen betrifft erhöhen, da die Studenten eine nahezu unendlich Anzahl ein Trainingsfragen beantworten können bevor sie das Online Quiz machen. Der Training Modus enthält aktuell Fragen für 12 Visualisierungsmodule. Die letzten 8 werden bald folgen, sodass es für alle Visualisierungsmodule ein Online Quiz gibt.
Eine weitere aktive Abteilung ist das Internationalisierungs Sub-Projekt von VisuAlgo. Wir wollen eine Datenbank für alle Informatik Begriffe aus alle englischen Texte im VisuAlgo System anlegen. Das ist eine große Aufgabe und benötigt Crowdsourcing. Sobald das System funktionstüchtig ist, werden wir VisuAlgo Besucher dazu einladen. Besonders wenn sie keine englischen Muttersprachler sind. Aktuel, haben wir auch verschiedene Notizen in verschiedenen Sprachen über VisuAlgo:
zh, id, kr, vn, th.

#### Mannschaft

Projektleiter & Berater (Juli 2011 bis heute)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Studentische Hilfskräfte 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Abschlussprojekt/UROP Studenten 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Abschlussprojekt/UROP Studenten 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Studentische Hilfskräfte 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Abschlussprojekt/UROP Studenten 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Abschlussprojekt/UROP Studenten 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Danksagungen
Dieses Projekt wird durch den großzügigen Teaching Enhancement Grant des NUS Centre for Development of Teaching and Learning (CDTL) ermöglicht.

#### Nutzungsbedingungen

VisuAlgo ist kostenlos für die Informatik-Community dieses Planeten (natürlich auch von Leute nicht von der Erde). Wenn dir VisuAlgo gefällt, ist die einzige Bezahlung um die wir bitten, das du anderen Informatik Studenten und Tutoren von dieser Seite erzählst. =) über Facebook, Twitter, Kurs Internet Seit, Blog Eintrag, Email usw.

Bist du ein Datenstruktur oder Algorithmik Student/Tutor, darfst du diese Webseite für deine Kurse nutzen. Solltest du Screenshots (Videos) von dieser Seite machen, darfst du diese woanders verwenden, solange du die URL dieser Seite (http://visualgo.net) als Referenz angibst. Es ist allerdings NICHT erlaubt VisuAlgo (client-Side) Dateien herunter zu laden und diese auf deiner eigenen Website zu hosten, da das ein  Plagiat wäre. Es ist auch NICHT erlaubt eine Anspaltung dieser Website zu machen und Varianten von VisuAlgo zu erstellen. Eine private Nutzung einer offline Kopie (client-side) von VisuAlgo ist erlaubt.

Beachte allerdings das VisuAlgo's Online Quiz System von Natur aus eine schwere Server-seitige Komponente hat und es gibt keinen einfachen Weg die Server-seitige Scripts und Datenbanken lokal zu speichern. Aktuell kann die allgemeinen Öffentlichkeit nur den 'Trainings Modus' nutzen um an das Online Quiz System zu kommen. Der 'Test-Modus' ist eine kontrollierterte Umgebung in der zufällig generierte Fragen und automatische Überprüfung für eine echte Prüfung in NUS genutzt werden. Andere interessierte Informatik Tutoren sollten Steven kontaktieren, wenn sie auch diesen 'Test-Modus' ausprobieren wollen.

Liste der Publikationen

Diese Arbeit wurde kurz beim CLI Workshop beim ACM ICPC Weltfinale 2012 (Polen, Warschau) und bei der IOI Konferenz bei IOI 2012 (Italien, Sirmione-Montichiari). Du kannst du diesen Link klicken um unser 2012 Paper über dieses System zu lesen (Es hieß 2012 noch nicht VisuAlgo).
Diese Arbeit wurde wurde hauptsächlich von ehemaligen Studenten gemacht. Die letzten Ergebnisse sind hier: Erin, Wang Zi, Rose, Ivan.

Bug Reports oder Anfragen zu neuen Features

VisuAgo ist kein fertiges Projekt. Dr Steven Halim arbeitet aktiv daran VisuAlgo zu verbessern. Wenn du beim benutzten von VisuAlgo in einer Visualisierung/Online Quiz einen Bug findest oder ein neues Feature möchtest, kontaktiere bitte Dr Steven Halim. Sein Kontakt ist die Verkettung seines Namens und at gmail dot com.