Modo de Exploração ▿

lento
rápido

A Binary Indexed (Fenwick) Tree is a data structure that provides efficient methods for calculation and manipulation of the prefix sums of a dynamic array of integer values.

In this visualization, we will refer to this data structure using the term Fenwick Tree as the abbreviation 'BIT' of Binary Indexed Tree is usually associated with bit manipulation.

Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.

X Esc
Próx. PgDn

There are three mode of usages of Fenwick Tree in this visualization.

The first mode is the default Fenwick Tree that can handle both Point Update (PU) and Range Query (RQ) in O(log n) where n is the largest index/key in the data structure. Note that the actual number of keys in the data structure is denoted by another variable m. We abbreviate this default type as PU RQ that simply stands for Point Update Range Query.

This clever arrangement of integer keys idea is the one that originally appears in Peter M. Fenwick's 1994 paper.

Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Ant. PgUp
Próx. PgDn

You can click the 'Create' menu to create a frequency array f where f[i] denotes the frequency of appearance of key i in our original array of keys s.

IMPORTANT: This frequency array f is not the original array of keys s. For example, if you enter {5, 0, 4, 1}, it means that you are creating 5 ones, no two, 4 threes, 1 four (1-based indexing). The largest index/integer key is n = 4 in this example.

If you have the original array s of m elements, e.g. {1,1,1,1,1,3,3,3,3,4} (s does not need to be necessarily sorted), you can do an O(m) pass to convert s into frequency table f of n indices/integer keys. (We will provide this alternative input method in the near future).

You can click the 'Randomize' button to generate random frequencies.

Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Ant. PgUp
Próx. PgDn

Although conceptually this data structure is a tree, it will be implemented as an integer array called ft that ranges from index 1 to index n (we sacrifice index 0 of our ft array) The values inside the vertices of the Fenwick Tree shown above are the values stored in the 1-based Fenwick Tree ft array.

X Esc
Ant. PgUp
Próx. PgDn

The values inside the vertices at the bottom are the values of the data (the frequency array f).

X Esc
Ant. PgUp
Próx. PgDn

The value stored in index i in array ft, i.e. ft[i] is the cumulative frequency of keys in range [i-LSOne(i)+1 .. i]. Visually, this range is shown by the edges of the Fenwick Tree. For details of LSOne(i) operation, see our bitmask visualization page.

X Esc
Ant. PgUp
Próx. PgDn

The function rsq(j) returns the cumulative frequencies from the first index 1 (ignoring index 0) to index j.

This value is the sum of sub-frequencies stored in array ft with indices related to j via this formula j' = j-LSOne(j). This relationship forms a Fenwick Tree, specifically, the 'interrogation tree' of Fenwick Tree.

We apply this formula iteratively until j is 0. (We will add that dummy vertex 0 later).

Discussion: Do you understand what does this function compute?

This function runs is O(log n), regardless of m. Discussion: Why?

X Esc
Ant. PgUp
Próx. PgDn

rsq(i, j) returns the cumulative frequencies from index i to j, inclusive.

If i = 1, the previous slide is sufficient.
If i > 1, we simply need to return: rsq(j)–rsq(i–1).

Discussion: Do you understand the reason?

This function also runs in O(log n), regardless of m. Discussion: Why?

X Esc
Ant. PgUp
Próx. PgDn

To update the frequency of a key (an index) i by v (v is either positive or negative; |v| does not necessarily be one), we use update(i, v).

Indices that are related to i via i' = i+LSOne(i) will be updated by v when i < ft.size() (Note that ft.size() is N+1 (as we ignore index 0). These relationships form a variant of Fenwick Tree structure called the 'updating tree'.

Discussion: Do you understand this operation and on why we avoided index 0?

This function also runs in O(log n), regardless of m. Discussion: Why?

X Esc
Ant. PgUp
Próx. PgDn

The second mode of Fenwick Tree is the one that can handle Range Update (RU) but only able to handle Point Query (PQ) in O(log n).

We abbreviate this type as RU PQ.

X Esc
Ant. PgUp
Próx. PgDn

Create the data and try running the Range Update or Point Query algorithms on it. Creating the data for this type means inserting several intervals. For example, if you enter [2,4],[3,5], it means that we are updating range 2 to 4 by +1 and then updating range 3 to 5 by +1, thus we have the following frequency table: 0,1,2,2,1 that means 0 one, 1 two, 2 threes, 2 fours, 1 five.

X Esc
Ant. PgUp
Próx. PgDn

The vertices at the top shows the values stored in the Fenwick Tree (the ft array).

The vertices at the bottom shows the values of the data (the frequency table f).

Notice the clever modification of Fenwick Tree used in this RU PQ type: We increase the start of the range by +1 but decrease one index after the end of the range by -1 to achieve this result.

X Esc
Ant. PgUp
Próx. PgDn

The third mode of Fenwick Tree is the one that can handle both Range Update (RU) and Range Query (RQ) in O(log n), making this type on par with Segment Tree with Lazy Update that can also do RU RQ in O(log n).

X Esc
Ant. PgUp
Próx. PgDn

Create the data and try running the Range Update or Range Query algorithms on it.

Creating the data is inserting several intervals, similar as RU PQ version. But this time, you can also do Range Query efficiently.

X Esc
Ant. PgUp
Próx. PgDn

In Range Update Range Query Fenwick Tree, we need to have two Fenwick Trees. The vertices at the top shows the values of the first Fenwick Tree (BIT1[] array), the vertices at the middle shows the values of the second Fenwick Tree (BIT2[] array), while the vertices at the bottom shows the values of the data (the frequency table). The first Fenwick Tree behaves the same as in RU PQ version. The second Fenwick Tree is used to do clever offset to allow Range Query again.

X Esc
Ant. PgUp
Próx. PgDn

We have a few more extra stuffs involving this data structure.

X Esc
Ant. PgUp
Próx. PgDn

Unfortunately, this data structure is not yet available in C++ STL, Java API, or Python Standard Library as of 2018. Therefore, we have to write our own implementation.

A copy of Fenwick Tree implementation can be found inside ch2.zip of Competitive Programming book download page.

X Esc
Ant. PgUp
Próx. PgDn

As the action is being carried out, each step will be described in the status panel.

X Esc
Ant. PgUp
Próx. PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Ant. PgUp
Próx. PgDn

Control the animation with the player controls! Keyboard shortcuts are:

Spacebar: play/pause/replay
Left/right arrows: step backward/step forward
-/+: decrease/increase speed
X Esc
Ant. PgUp
Próx. PgDn

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

X Esc
Ant. PgUp

Criar

RSQ / Query

Atualizar

Vai!

Randomize

pos =

val +=

Vai!

L =

R =

Vai!

Vai!

Randomize

L =

R =

val +=

Vai!

pos =

Vai!

Vai!

Randomize

L =

R =

val +=

Vai!

L =

R =

Vai!

#### Sobre

O VisuAlgo foi conceitualizado em 2011 por Dr. Steven Halim como uma ferramenta para auxiliar seus estudantes a entenderem melhor estruturas de dados e algoritmos, permitindo que eles aprendessem o básico por conta e em seu próprio ritmo.
VisuAlgo contém muitos algoritmos avançados que são discutidos no livro de Dr. Steven Halim ('Competitive Programming', em co-autoria com seu irmão Dr. Felix Halim) e além. Hoje, algumas visualizações/animações destes algoritmos avançados só podem ser encontrados no VisuAlgo.
Apesar de ter sido especificamente projetado para os estudantes da Universidade Nacional de Singapura (NUS) cursando várias disciplinas de estruturas de dados e algoritmos (ex.: CS1010, CS1020, CS2010, CS2020, CS3230, e CS3230), como defensores do aprendizado online, nós esperamos que mentes curiosas ao redor do mundo achem estas visualizações úteis também.
VisuAlgo não foi projetado para funcionar bem em telas de toque pequenas (ex.: smartphones) desde o  princípio devido à necessidade de atender a muitas visualizações complexas de algoritmos que requerem vários pixels e gestos de clicar-e-arrastar para interação. A resolução mínima para uma experiência de usuário respeitável é 1024x768 e somente a página inicial é relativamente amigável a dispositivos móveis.
VisuAlgo é um projeto em andamento e mais visualizações complexas ainda estão em desenvolvimento.
Outro ramo de desenvolvimento em atividade é o subprojeto de internacionalização do VisuAlgo. Nós queremos preparar uma base de dados de termos de Ciência da Computação para todos os textos em inglês que aparecem no sistema VisuAlgo. Esta é uma tarefa grande e requer crowdsourcing. Uma vez que o sistema estiver pronto, nós convidaremos os visitantes do VisuAlgo a contribuir, especialmente se você não for um falante nativo de inglês. Atualmente, nós também temos notas públicas sobre o VisuAlgo em vários idiomas:
zh, id, kr, vn, th.

#### Time

Líder do Projeto & Conselheiro (Julho de 2011-presente)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Koh Zi Chun, Victor Loh Bo Huai

Projeto Final do Ano/Estudantes do Programa de Oportunidades de Pesquisa para a Graduação (UROP) 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Projeto Final do Ano/Estudantes do Programa de Oportunidades de Pesquisa para a Graduação (UROP) 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Projeto Final do Ano/Estudantes do Programa de Oportunidades de Pesquisa para a Graduação (UROP) 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Projeto Final do Ano/Estudantes do Programa de Oportunidades de Pesquisa para a Graduação (UROP) 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Este projeto foi tornado possível pela generosa Concessão de Aperfeiçoamento de Ensino do Centro de Desenvolvimento de Ensino e Aprendizado (CDTL) da Universidade Nacional de Singapura (NUS).

#### Termos de uso

VisuAlgo é gratuito para a comunidade de Ciência da Computação na Terra. Se você gosta do VisuAlgo, o único pagamento que lhe pedimos é que você fale da existência do VisuAlgo para outros estudantes/instrutores de Ciência da Computação que você conhece =) via Facebook, Twitter, página do curso, blog, email, etc.
Se você é um estudante/instrutor de estruturas de dados e algoritmos, você tem permissão para usar este site diretamente para suas aulas. Se você tirar capturas de tela (vídeos) deste site, você pode usar as capturas de tela (vídeos) em outros lugares desde que você cite a URL deste website (http://visualgo.net) e/ou a lista de publicações abaixo como referência. Contudo, você NÃO tem permissão para baixar os arquivos do VisuAlgo (do lado do cliente) e hospedá-los em seu website, uma vez que isso configura plágio. No momento, nós NÃO permitimos a outras pessoas copiar este projeto e criar variantes do VisuAlgo. Não há problemas em usar a cópia offline (lado do cliente) do VisuAlgo para seu uso pessoal.
Note que o componente do quiz online do VisuAlgo, por natureza, é um componente pesado para os servidores e não há maneira fácil de salvar os scripts e bases de dados do servidor localmente. Atualmente, o público em geral pode apenas usar o 'modo de treinamento' para acessar este sistema de quiz online. Atualmente, o 'modo de prova' é um ambiente mais controlado para usar estas questões geradas randomicamente e verificação automática para um exame real na Universidade Nacional de Singapura (NUS). Outros instrutores de Ciência da Computação interessados devem contatar o prof. Dr. Steven Halim se você quiser experimentar este 'modo de prova'.'

Lista de Publicações

Este trabalho foi apresentado brevemente no CLI Workshop durante a Final Mundial do ACM ICPC 2012 (Polônia, Varsóvia) e na IOI Conference durante a IOI 2012 (Sirmione-Montichiari, Itália). Você pode clicar neste link para ler nosso paper de 2012 sobre este sistema (ele ainda não era chamado VisuAlgo em 2012).
Este trabalho foi feito em sua maioria por meus estudantes anteriores. Os relatórios finais mais recentes estão aqui: Erin, Wang Zi, Rose, Ivan.

Avisos de Bugs ou Solicitações de Novas Funcionalidades

VisuAlgo não é um projeto finalizado. Dr. Steven Halim ainda está ativamente melhorando o VisuAlgo. Se você está usando o VisuAlgo e perceber um bug em qualquer uma de nossas páginas de visualizações/ferramenta de quiz online ou se você quiser solicitar novas funcionalidades, por favor contate o Dr. Steven Halim. O contato dele é a concatenação de seu nome e adicione gmail ponto com.