

B. Comp Dissertation Final Report

"Online Judge" for data structures

and algorithms course

By

Ivan Reinaldo

Department of Computer Science

School of Computing

National University of Singapore

2013/2014

B. Comp Dissertation Final Report

"Online Judge" for data structures

and algorithms course

By

Ivan Reinaldo

Department of Computer Science

School of Computing

National University of Singapore

2013/2014

Project No: H160080

Advisor: Dr. Steven Halim

Deliverables:

 Report: 1 volume

iii

Abstract

This project is a data-structure learning project which is part of the project on unified

and interactive web-based visualization of various classical and non-classical algorithms

at http://www.comp.nus.edu.sg/~stevenha/visualization. This project aims to build an

interactive learning website on top of the visualizations for student to refine and verify

their knowledge on data structures and algorithms. This report will include changes

made in software system design, some of the visualizations implemented in the data-

structure learning project, and the online judge system to test basic understanding of the

students.

This project is built mainly on HTML5, JavaScript, and CSS3, with some PHP and

MySQL for online judge functionalities and using D3.js library for a more interactive

visualization. Link to temporary project website:

http://algorithmics.comp.nus.edu.sg/~onlinequiz/staging/. Link to temporary repository

of the project source code: https://github.com/stevenhalim/visualgo.

Subject descriptors:

Applied computing → E-learning

Applied computing → Computer-assisted instruction

Human-centered computing → Graph drawings

Social and professional topics → Computer science education

Software and its engineering → Object oriented architectures

Computer systems organization → n-tier architectures

Software and its engineering → Abstraction, modeling and modularity

Software and its engineering → Software usability

Keywords:

eLearning, Data Structure and Algorithms, Computer Animation

Implementation software:

HTML5, JavaScript 1.7, CSS3, PHP 5.3.3, MySQL

http://www.comp.nus.edu.sg/~stevenha/visualization
http://algorithmics.comp.nus.edu.sg/~onlinequiz/staging/
https://github.com/stevenhalim/visualgo

iv

Acknowledgement

I am thankful to the National University of Singapore for providing me a chance to

learn and take this project, and especially to Dr. Steven Halim for being a wonderful

supervisor who not only guided me, but also took part in coding the project. I also thank

my teammate Rose Marie Tan for her various contributions, especially for the beautiful

UI design which made the visualization website more attractive, and my teammate Duy

Nguyen for his various contributions, especially on his implementation of graph

drawing functionalities which are very challenging. Last but not least, I also want to

thank my previous employer A*STAR Business Analytics Translational Centre (BATC)

for introducing D3.js to me and taught me numerous software engineering techniques

which I applied in this project.

v

Table of Content

Abstract iii

Acknowledgement iv

Table of Content v

1 Introduction 1

 1.1 About the Project 1

 1.2 Motivation 2

 1.3 Project Objectives 3

 1.4 Individual Objectives 7

2 Literature Review 8

 2.1 Existing Visualization Platforms 8

 2.2 Existing Online Judge Platforms 8

 2.3 Analysis of Previous Team’s Visualization Tool 10

 2.4 Software Engineering 12

3 Software Design Methodology 14

4 Visualization Tool 16

 4.1 Requirements 16

 4.2 Software Design 17

 4.3 Strengths over previous team’s visualization tool 22

 4.4 Proof of Concept 23

 4.5 User Feedback 25

5 Online Judge Tool 27

 5.1 Requirements 27

 5.2 Software Design 28

 5.3 Proof of Concept 39

6 Recommendations for Future Works 49

 6.1 Visualization Tool 49

 6.2 Online Judge Tool 50

References vi

1

1 Introduction

1.1 About the Project

This report describes my contribution on a long-term project called “VisuAlgo”.

VisuAlgo is a project started by Dr. Steven Halim since 2011, with the aim of providing

an interactive learning platform on Data Structures and Algorithms topics. In order to

achieve these, currently VisuAlgo supports two main functionalities, which are teaching

students about Data Structures and Algorithms (henceforth referred to as “visualization

tool”), and assessing students’ understanding on Data Structures and Algorithms

(henceforth referred to as “online judge tool”).

During this academic year, the online judge tool is the focus of the project. This is

mainly because the visualization tool has been implemented extensively in the previous

academic years, and had supported a large amount of Data Structures and Algorithms

visualization. My main contribution is to build the online judge tool from scratch and

integrate them with the existing visualization tool. However, instead of integrating the

online judge tool with the existing visualization tool, I have to build a new visualization

tool replacing the existing visualization tool due to technical reasons outlined in this

report. The final product consists of a website and a server-side component with the

following features (my part is shown in italic and underline):

Visualization Tool

 Visualisations using the new User Interface (UI) and Scalable Vector Graphics

(SVG) animation:

Binary Search Tree/AVL Tree, Binary Heap, Union Find, Bitmask, Minimum

Spanning Tree, Single-Source Shortest Paths, Suffix Tree, Suffix Array, and

Geometry, as well as a system to display the animation

 Visualisations not yet updated to use the new interface and still using HTML5

Canvas:

Sorting, Linked List, Stack, Queue, Recursion, Graphs, Graph Traversal,

Segment Tree, Binary Indexed Tree, Max Flow, and Graph Matching

2

Online Judge Tool

 Client-side

A Training page for students’ self-practice, a Test page for formal regulated tests,

an Answer Key page for students to review their answers after the test, a

Scoreboard of test results, and an Admin Control Panel for the examiner to

control, customise and monitor the test in progress

 Server-side

Question generators and verifiers on the following topics: Binary Search

Tree/AVL Tree, Binary Heap, Union Find, Bitmask, Minimum Spanning Tree,

Single-Source Shortest Paths, Graph Traversal, Graph Data Structures, as well

as all other infrastructures and database

1.2 Motivation

The motivation of this project was an effort to improve the teaching methods on Data

Structures and Algorithms which are usually done in the following ways (Halim et al,

2010):

● Using pre-scripted PowerPoint presentation (or other presentation applications)

with diagrams / animations of the algorithms

● Using hand-drawn diagrams of the algorithms on the board / writing on

projected paper / writing on monitor using stylus pen

● Providing links to pre-existing algorithms visualizations

As indicated in Dr. Halim’s paper, this project aims to provide a better learning method

than the methods mentioned above, by providing a unified platform for visualization of

various Data Structures and Algorithms.

The motivation of the online judge tool stems from Dr. Halim’s experience in

conducting graded assessments. He found that there are questions which are repetitive

and trivial in nature, but is tedious to create and verify. Thus, he developed the concept

of automating the process of creating and verifying such questions, which becomes the

online judge tool.

3

1.3 Project Objectives

Improving Learning Experience for Students

During the previous academic years, the project has gathered positive responses from

the students, as seen in this module survey during AY 2012/2013:

Question CS3233 (24 responses) CS2020 (7 responses)

Does the visualization help

you understand the

algorithm taught better?

Yes (13/54.1%)

No (0/0.0%)

Neutral (11/45.8%)

Yes (5/71.4%)

No (0/0.0%)

Neutral (2/28.5%)

When do you use the

visualization? (select all

that applicable to you)

In class (8/33.3%)

After class (4/16.6%)

Before test (14/58.3%)

Others (6/25.0%)

In class (1/14.2%)

After class (0/0.0%)

Before test (5/71.4%)

Others (3/42.9%)

There are two main points that we can observe in this data: students thinks that

visualization tools are good addition to the learning process, and that most students only

use the visualization tools before the test. Regarding the first point, it is important to

note that no students think that the visualization tool is detrimental to the learning

process, and that the number of students who benefit from this tool is more than 50%.

This is consistent with Fleming’s VARK model, which states that 60-65% people are

visual learners and thus learn best by using pictures and visual aids (Fleming, 2006).

This means that the visualization tool do help students in their learning process. This

result is intuitive, because with the visualization tool students can learn the materials

using their own data set and receive confirmation on their understanding, instead of

having to rely on hardcoded examples. In addition, according to Dr. Halim, students

found the visualization page impressive when they see it for the first time. Visualization

tool acts as a virtual lecturer that explains how Data Structures and Algorithms work. If

4

students are still unclear about the topic, they will have an assurance that there is always

a virtual lecturer that will help them to re-explain the topic

In the second point, it is shown that students mostly use the visualization tool before

tests, and stopped using the tool after the test. This means that the visualization tool

previously functions as a review material for students, and thus is open to improvements.

In particular, the tools in this project should be used more often when there is no graded

test. To achieve this, one improvement that the project brings this academic year is the

online judge tool. This tool will allow students to immediately confirm their

understanding on the topics after each lectures / tutorials by enabling them to practice

on pseudo-randomly generated questions. This tool will also greatly help as review

material for tests, because now students can practice on questions they have never seen

before. Online judge tool acts as a virtual examiner that allows students to practice on

new questions.

Ultimately, this project will improve learning experience for students, by providing

students with the means to learn the topics and practice on questions on their own.

Enhancing Teaching Experience for Teachers

As mentioned in motivation section, teaching Data Structures and Algorithms are

usually done by either providing pre-scripted PowerPoint examples, hand-drawn

diagrams, or providing links to existing visualization tools. There are problems in each

of the approach.

Pre-scripted PowerPoint examples are the most common method chosen, because they

do not present any difficulties for teacher during lectures. However, there are several

problems associated with them, some of them are:

 The example is not interactive; students cannot ask for an example using their

own data set, especially if they are confused on corner cases not present in the

example

5

 Teachers will have difficulties preparing the examples that suit the students;

complex examples risk confusing the students and contain bugs, while simple

examples risk being too obvious for the students

Hand-drawn diagrams solve those problems, since teachers can directly ask students the

data set they want to use. However, this method comes with its own set of problems:

 Teachers need to prepare beforehand; inability to explain the material using

students’ data set, which is arbitrary, can both confuse students and give the

perception that the teacher is not knowledgeable. Being knowledgeable is

important factor in students’ perception of the teacher (Delaney et al, 2010)

 Students’ data set have the potential to become too complex and unmanageable

during the short time allocated for the section or too trivial/ill-defined. Either

way, this might be detrimental to the teaching activity

 Teachers can try to create their own data set instead of using students’ data set,

but this defeat the purpose of using hand-drawn diagrams; pre-scripted examples

would do better in this case.

Lastly, teachers can simply give students links to pre-existing visualization on Data

Structures and Algorithms. However, there are problems as well:

 Visualizations are usually not unified, but only done for only a specific

algorithms; this means that visualizations does not have the same look and feel,

which causes an extra learning curve for students to use the visualizations in the

first place

 Different visualizations might use different pseudocode for the same operation,

potentially causing confusion among students

 Visualizations might haven’t been implemented yet, forcing teachers to resort to

the first two methods

This project can improve teaching experience in multiple ways, some of them are:

 Visualization tool

6

o Visualization tool allows students to use their own data set without

overwhelming the teacher, since the explanation process is automated

o Visualization tool is guaranteed to implement most materials presented

in NUS class, and it will be more geared towards NUS curriculum

o Visualization tool have the same look and feel, so students will only have

to learn using one unified system

 Online judge tool

o The tool opens the potential of teachers asking impromptu questions

during lectures, increasing interactivity

o Feedback from impromptu questions are available almost instantly,

allowing both teachers and students to analyse common pitfalls

In summary, this project can enhance teaching experience by solving problems present

in traditional methods and introducing a more interactive method to deliver materials.

Improving Process and Quality of Graded Assessment

According to the revised Bloom’s Taxonomy by Krathwohl (Krathwohl, 2002),

cognitive learning process can be divided into 6 parts (from lowest level to highest

level):

1. Remember: Retrieving relevant knowledge from long-term memory

2. Understand: Determining the meaning of instructional messages, including oral,

written, and graphic communication

3. Apply: Carrying out or using a procedure in a given situation

4. Analyze: Breaking material into its constituent parts and detecting how the parts

relate to one another and to an overall structure or purpose

5. Evaluate - Making judgments based on criteria and standards

6. Create - Putting elements together to form a novel, coherent whole or make an

original product.

Dr. Steven Halim found out that in graded assessments, students will have to be asked

questions on the 3 lowest level of the taxonomy: remember, understand, and apply.

Answers to these questions are trivial, and a significant majority of the student will be

7

able to answer the questions correctly, but still need to be asked to identify students who

are struggling with the concepts / unqualified to pass the module. However, the process

of creating and verifying the answers of such questions is very tedious and repetitive.

The presence of an online judge tool would solve this problem by automating the

process of creating and verifying the answers of these types of questions. Furthermore,

the online judge tool will allow more time during graded assessments to be devoted to

discuss questions of higher taxonomy level, such as analyse and evaluate level.

1.4 Individual Objectives

Designing an Extensible System for Long-Term Development

Among the drawbacks of the previous visualization tool, the most serious one is the lack

of good software engineering practices, resulting in spaghetti code and unclear

separation of concern. Dr. Steven Halim indicates that there has never been any effort to

enforce such practices, and past developers are just trying to “follow the standard” set

by the original developers. In the long run, this will cause future development to incur

high technical debt of trying to fix hidden bugs and compatibility issues.

Due to this fact, one of my two main objectives is to design an extensible system that

can be maintained in long-term development. I am responsible for designing the system

as a whole and making sure that the main logic of the system is well-structured, mainly

by utilizing my knowledge in software engineering from CS2103 and CS3213. It is also

my responsibility to document the system, as well as implement the main logic of the

system I designed.

Creating a Working Version of Online Judge Tool

Ultimately, the milestone of this project in this academic year is to implement an online

judge tool which is usable in NUS classes. I am responsible for implementing the logic

features of the online judge tool, particularly on its ability to generate questions and

verify answers. I am also responsible for other utilities to enhance the usability of the

system, such as the ability to create parameterized test questions and storing students’

answers in the database.

8

2 Literature Review

2.1 Existing Visualization Platforms

Several visualization platforms for Data Structures and Algorithms exist before this

project started even back in 2011. Some of the most notable ones are

http://nova.umuc.edu/~jarc/idsv/ , http://research.cs.vt.edu/AVresearch/ and

http://www.cs.usfca.edu/~galles/visualization/Algorithms.html , with the latter

providing visualization on most data structures and algorithms covered in CS2010 and

CS1020 (Galles, 2011). More visualization tools can be found on the website

http://algoviz.org/ which provides links to various visualization tools (AlgoViz, 2004).

Dr. Halim’s paper contains an extensive review on these platforms, and will not be

discussed further here.

There are several reasons why the visualization tool is developed even though there are

already existing systems implemented. One reason is because our visualization tool

aims to go beyond the common data structures and algorithms taught until CS2010, up

to the exotic data structures and algorithms taught in CS3233. Another reason, and the

most important one, is that the visualization tool is just a component of the greater part

of the system, which also contains other tools such as the online judge tool. The

motivation of this project is to provide a unified look and feel, and thus it is necessary to

develop our own visualization tool.

2.2 Existing Online Judge Platforms

Understanding how online learning and testing works currently is also essential for this

project, since it helps to gather ideas on how the online judge tool should be created.

At the beginning of the project, I tried to experience how MOOC works by taking an

online course in Coursera. My conclusion is that currently online learning is currently

not conducted efficiently, mainly due to the low motivation of students to complete the

course. This is consistent with the data provided by K. Jordan, which mentions that the

http://nova.umuc.edu/~jarc/idsv/
http://research.cs.vt.edu/AVresearch/
http://www.cs.usfca.edu/~galles/visualization/Algorithms.html
http://algoviz.org/

9

completion rate for most MOOC is lower than 13% (Jordan, 2013). However, this is not

entirely relevant to the project this academic year since it is out of the project scope, and

for me as well since I am not responsible for the user experience.

Online judge tool itself is not a new concept. There are some articles which describes an

automated grading system, such as the Automated Essay Scoring system used by edX as

described by Dr. Balfour (Balfour, 2013). Some of the critics of the system are that the

system is not human enough for essay grading, and thus is not fair. Hence, this project

will only support questions which answers are discrete, which is analogous to the

project motivation and objectives. Currently there are 2 systems that closely resemble

this project:

 Wolfram Problem Generator (The Wolfram|Alpha Team, 2013) which generates

questions and verify answers for mathematics problems

 TRALKA2 (Nikander et al, 2004) which generates questions and verify answers

for computer science problems, and has the same objectives as our system.

However, there are more restrictions to use this system compared to our system,

particularly because it requires installation and sign-up to use. It is also

important to note that the system is last updated in 2009.

Our team have some debates on how to organize online graded assessments using the

online judge tool. There are 2 methods which are being considered, which are

randomized assessment, in which every students get different set of questions without

any human intervention, and parameterized assessment, in which examiners can set the

parameters to generate the questions first and every students will get the same set of

questions. One of the main benefits of randomized assignment is to prevent cheating,

and moreover the system does not suffer cheating problems present with questions

pulled from a question bank, as described by B. Scheiner (Scheiner, 2012). We tried to

conduct a randomized test using a pool of question bank to the CS2010 students, and to

guarantee equal difficulty levels we classified each problems to levels of difficulties,

and each student will get the same amount of questions from each level of difficulties.

However, a fair amount of students indicated in the CS2010 module survey that they

perceive randomization of questions, even with the difficulty level guarantee, is unfair,

10

particularly because the difficulty level of the assessment will still be different for each

student. One such scenario that our team can think of is that a student can be proficient

in a certain topic and luckily get questions in that topics alone. Hence, our team decided

to implement a parameterized assessment: questions are still randomly generated, but

every student will get the same questions although presented in different order. At the

very least, questions are guaranteed to be fresh for every assessments.

2.3 Analysis of Previous Team’s Visualization Tool

Considering that this project is an ongoing project which has begun 2 years ago, it is

important to review the software design before adding a huge feature such as online

judge tool. However, due to lack of past documentations, there is no diagrams /

description on the software design of the previous team. Below is the block diagram of

the system and a sequence diagram describing the previous team’s visualization tool

from my point of view:

Aside from the lack of structure, the implementation of the old visualization tool itself

poses a problem which makes it difficult to implement the online judge tool. Below is a

brief description of how the old visualization tool works:

1. Each separate HTML files has a main visualization JavaSript (JS), which will

initialize GraphWidget and other backend codes such as Widget, a custom JS

11

library which supports animation functionalities such as play, pause, stop, and

customization of vertex and edge objects such as onclick functions, colors, etc.

2. The main visualization creates three functions for each animation called to be

executed by the widgets, which is called pre, algo, and end.

o pre: Resets the visualization to a pre-execution state. This is used in

Replay and Previous functionalities

o algo: Renders the algorithm visualization and the pseudo-code highlight.

This is the main functionalities of the visualization

o end: Forces the visualization to display the ending state. This also stops

the current animation. Used in Stop functionalities

o autoEnd: This is a fourth parameter which is currently unused

3. The widgets will draw the necessary utilities (play, stop, pause button and the

progress bar, FPS display, etc.), hides the other irrelevant buttons, and executes

the functions given to it. It first calls pre, and then executes algo. Users can

execute functionalities such as changing FPS, Next, Previous, and Replay,

which will not be elaborated in this report.

4. Once the user chooses Stop, the end function will be executed and cleanup will

follow

From these findings, I identified weaknesses in the old visualization tool which will

make it difficult to extend with the online judge tools, particularly due to the following:

 Extra effort required to achieve similar look and feel

While it might seems that the widgets is the ones doing the rendering, actually it

is the functions passed in (pre, algo, end) which does the job. This means the

main visualization is the one doing the rendering; the widgets are only

concerned with providing the necessary infrastructures such as progress bar, and

executes the functions passed in. New tools cannot use existing code to achieve

similar look and feel; in order to achieve this, developers have to read the old

codebase and implementing the UI part of the tool with similar style.

 Spaghetti code, low cohesion and tight coupling

The widgets also contains the implementation of vertex and edge objects which

contains algorithm-specific data (e.g. leftChild and rightChild, both only used in

12

BST-like data structure) instead on focusing on UI data. Continuing to follow

this style will quickly turn the online judge tool codebase unmanageable due to

entanglement with visualization tool codebase.

 Not extensible

Due to the tight coupling nature of the old visualization tool, adding the online

judge tool would be tough, and even more tough to change the underlying

library used for the UI to other library. One must at least recode the entire

visualization logic to achieve this. This violates the user requirement which

states the project should be extensible.

 Inherent system limitations

There are limitations in the system, such as the efficiency of animation. When

the user chooses to return to a previous frame, the old library replays the entire

animation from the first frame and moves forward to the frame requested by the

user. This issue causes even the simplest visualization to be slow to the point

that it is noticeable by the user. Some of these system limitations cannot be fixed

without major changes of the old visualization tools.

In conclusion, major changes are required to the visualization tool before any work can

be done to the online judge tool. At minimum, the visualization tool should be able to

provide a library which can be used by the online judge tool to achieve similar look and

feel.

2.4 Software Engineering

Most of my knowledge on software engineering are obtained from classes such as

CS2103 (Software Engineering) and CS3213 (Software System Designs). I used this

knowledge to design parts the system using the MVC pattern and several other patterns

as seen fit, such as Database Access Pattern. I also employed software design principles

described by R. Martin (Martin, 2000) and Microsoft (Microsoft, 2009) in my

implementation, especially the following principles:

 Modularization: Different components of the system should be grouped into

different classes/object/files/folders

13

 Separation of concern: Each component or module should not overlap each other

in terms of functionality

 Single Responsibility principle: Each component or module should be

responsible for only a specific feature or functionality, or aggregation of

cohesive functionality.

 Principle of Least Knowledge: A component or object should not know about

internal details of other components or objects.

 Don’t repeat yourself (DRY): A component should not re-implement

functionalities that are already implemented in other components.

 High Cohesion and Loose Coupling: The system should minimize

interdependence and maximize diversity of tasks among classes

14

3 Software Design Methodology

Below is a description of procedures I follow to design the both the visualization tool

and the online judge tool. During development, some of the procedures are not

necessarily be conducted sequentially, but revisited as required.

Determine the Requirements

The first step of designing the system as a whole is to determine the requirements; what

does the system needs to support and not support, and which functionalities are more

important. This provides a clear understanding on the system and the scope of the

project as a whole.

Identify the Components

The next step is to divide the system into different components, each of them doing

separate tasks. The components are then analysed further to determine their importance

in the requirements and their reusability.

Put the Components Together

After identifying the components, I tried to put them together. Here I determined how

the components should interact with each other, especially on components that have to

be reused in multiple tools.

Identify and Implement an Initial Version of the Critical Component

At this step, it becomes clear which components act as the foundation of the system.

Other components will heavily rely on this component to work, and thus the component

is implemented with minimum functionalities. In this way, other less critical

components can be implemented even by other developers involved in the project.

Create a Proof of Concept of Other Components

Before other developers can assist in other less critical components, I created a proof of

concept by implementing one class which uses the critical component, which usually

15

will enable the system to perform limited features on one data structure or algorithm.

Result on this step is visible and is already usable.

Receive User and Developer Feedback

Since the system is usable, it is possible to gather user feedback on functionalities that

need to be changed. Developer feedback is also gathered, particularly on whether the

developers can implement other classes to perform the same features on different data

structure or algorithm.

Implement the Full Version of the Critical Component

Based on the feedback, the critical component is then refined. After the critical

component works as desired, all other features can be added safely.

Implement the Rest of the System

The rest of the system can then be implemented with ease, considering the main bulk of

the functionalities have been implemented in the critical component.

16

4 Visualization Tool

4.1 Requirements

Based on the analysis of previous team’s work and the long-term vision of the project as

a whole, I formulated a list of requirements as follow:

Functional Requirements

1. The visualization tool should include representations of data structures and

algorithms taught in the following NUS modules:

a. CS1020 Data Structures and Algorithms I (Future Works)

b. CS2010 Data Structures and Algorithms II

c. CS2020 Data Structures and Algorithms Accelerated (Partially supported)

d. CS3230 Design and Analysis of Algorithms (Future Works)

e. CS3233 Competitive Programming (Future Works)

2. All visualizations must be accessible to the user from a central (home) page

3. The visualization tool must be able to show the sequence of steps involved for

each operation related to a certain data structure or algorithm

4. The visualization tool must allow the user to control the playback of the

sequence of steps for each operation, including the ability to pause, replay, move

directly to a particular step in the sequence, and control the playback speed

5. The visualization tool must provide an explanation or description of each step in

each operation

6. The visualization tool must provide pseudocode tracing for each operation

7. The visualization tool should allow users to build instances of provided data

structures and representations of algorithms using their own datasets, instead of

relying on a hard-coded dataset

Non-Functional Requirements

1. Performance: All operations and animations should occur with minimal delay

2. Extensibility: The system should be able to accommodate additional secondary

features in the future

17

3. Compatibility: the visualization tool must be able to function fully in the latest

version of Google Chrome (Version 33). If possible, it should work on Mozilla

Firefox Version 25+ and Safari Version 6+ as well. It should be usable on tablets

as well as laptops, on screens with a resolution of at least 1024x768 px.

4. Usability: the visualization tool should be reasonably easy to learn, easy to use,

and enjoyable to use

4.2 Software Design

In response to the problems in the old visualization tool, a new visualization tool is

created, which is the one currently used in the system. The new tool is made with long-

term development in mind, and thus follows the MVC structure. Below is the block

diagram of the visualization tool.

18

There are 3 main part of the new visualization tool:

 Graph Library

This library defines graph objects which represents the graph described by the

visualization tool. The library takes in information on what does the

visualization tool should show in the form of “Graph State” objects, and

manipulates the DOM objects to display the information.

 Visualization Widgets

These widgets contains the logic of the data structures and algorithms visualized

by the tool. It is equivalent to the “Visualization Logic” in the old visualization

tool, only that it does not directly tell the UI on how to draw the graph. It passes

“Graph State” objects to the Graph Library which information will be reflected

on the UI.

 “Graph State” Object (not shown in the block diagram)

It is a JS object containing information on what to draw on the UI. This object is

passed into the Graph Library to be drawn on the UI.

Structure of “Graph State” Object:

 “vl”: JS object with vertex ID as keys and JS objects containing corresponding

attributes as a value

o Compulsory attributes:

 cx : X-coordinate of center of vertex

 cy : Y-coordinate of center of vertex

 text : Text contained inside the vertex

 state : Defines the CSS attributes of the DOM objects which are

parts of the vertex, as defined in properties.js

o Optional attributes (overrides attributes defined in “state”):

 inner-r : Customize the vertex's inner radius (Circular)

 outer-r : Customize the vertex's outer radius (Circular)

 inner-w : Customize the vertex's inner width (Rectangular)

 outer-w : Customize the vertex's outer width (Rectangular)

 inner-h : Customize the vertex's inner height (Rectangular)

 outer-h : Customize the vertex's outer height (Rectangular)

19

 inner-stroke-width : Customize the vertex's inner stroke width

 outer-stroke-width : Customize the vertex's outer stroke width

 text-font-size : Customize the vertex text's font size

 “el”: JS object with edge ID as keys and JS objects containing corresponding

attributes as a value

o Compulsory attributes:

 vertexA: id of vertex A

 vertexB: id of vertex B

 type: undirected, directed, or bidirected (direction: A->B)

 weight: The edge’s weight

 state: Defines the CSS attributes of the DOM objects which are

parts of the edge, as defined in properties.js

 animateHighlighted: Determines whether highlighted animation

should be played. Boolean

o Optional attributes:

 displayWeight: Determines whether weight should be shown.

Boolean

How the Visualization Widgets works:

1. The visualization widget receives a user input stating that it needs to visualize a

certain function on the data structure / algorithm.

2. The visualization widget creates “Graph State” objects which describes the state

of the graph from initial state to final state.

3. All of the information are passed into GraphWidget.js, which will manage how

these information will be shown to the user

How the Graph Library works:

1. The graph library receives an array of “Graph State” objects

2. The graph library begins to display graph as described the “Graph State” objects,

starting from index 0 to the last index.

3. At any point of time, user can directly manipulate with the displaying

mechanism, such as by:

20

1. Pausing the animation: Stop the display of next “Graph State” object

until being resumed

2. Resuming the animation: Resume the display of next “Graph State”

object from the last state

3. Jump to iteration x: Jump the animation to the xth “Graph State” object

4. Modify the speed of animation: Make it faster or slower. Default is 4 fps.

5. Stop the animation: Jump to the last state and clears the “Graph State”

object array, which effectively prevents users from returning to previous

frames again.

One exception to the visualization tool is the Bitmask visualization, which does not use

the graph library. This is due to several factors:

 During the development of BitmaskWidget, the Graph Library is still in infancy

stage

 BitmaskWidget didn’t use any graph features, because it is not a graph

The problem of restricting visualization to graph structures also poses a problem during

the development of SuffixArrayWidget. The team cannot provide a perfect solution at

that time, due to the developer of SuffixArrayWidget, Duy, graduating soon. Since the

Graph Library is already established, I added temporary features such as rectangular

vertex to mask the problem. Better solution to this limitation will be addressed in future

works section.

Below is a sequence diagram showing how the parts using Graph Library works to

visualize “search(x)” in a BST. Over here, it is assumed that the users do not use any

controller functionalities from GraphWidget.

21

22

4.3 Strengths over previous team’s visualization tool

 Modularization and decoupling of the tool

The new graph library only contains the rendering information, decoupling

visualization logic from UI information. Furthermore, the graph library directly

manipulates the DOM objects, masking all rendering details from the

visualization logic. The codebase is more manageable, with every parts of the

tool doing specific tasks.

 Reusable graph library to achieve similar look and feel

Graph library can function independently from visualization widgets; as long as

an array of “Graph State” objects is supplied, it can display graphs on the UI.

This means that the online judge tool and other future tools can use the graph

library to achieve similar look and feel.

 Extensible

Decoupling of the visualization tool makes it much easier to add online judge

tool and any other tools; just make sure that the new tools can use the graph

library. Furthermore, porting to new underlying UI library is easily done because

the only files that need to be modified are GraphVertexWidget,

GraphEdgeWidget, and GraphWidget. This fulfills the user requirement which

states the project should be extensible.

 Fixed system limitations in old visualization tool

The new visualization tool is developed with the system limitations of the

previous visualization tool in mind, and extra caution is made to not reintroduce

them again. For example, animations are now more efficient because the new

visualization tool can jump between frames in O(1) time complexity; all that

needs to be done is to load the “Graph State” object for that frame. System

limitations present on the old visualization tools are no longer present in the

new visualization tool.

Aside from the benefits, there are also new issues introduced by the new visualization

tool. These will be addressed in future works section.

23

4.4 Proof of Concept

In order to demonstrate how the graph library works, I created two visualization widgets

using the library. They are visualizations of BST and MST.

BST Visualization

24

List of functionalities implemented:

 AVL Tree, which is a balanced BST alternative

 Creating a new BST/AVL based on either user input or random number generator;

rules can also be set in the random number generator, such as generating BST that is

skewed to left/right side

 Insertion of new vertex/vertices and its animation

 Deletion of existing vertex/vertices and its animation

 Successor/predecessor animation of a vertex inside the tree

 In-order traversal animation of the tree

MST Visualization

25

List of functionalities implemented:

 Graph generator from predefined templates (weight and direction of edges are

randomized)

 Prim algorithm animation

 Kruskal algorithm animation

4.5 User Feedback

Below are some selected comments on the visualization tool from the official CS2010

AY2013/2014 Semester 1 module survey:

 Positive

o I really like the new visualization tool as it really helps solve some of my

problems in imagining how an algorithm works :)

o Clean and simple UI. The visualization tool is clearer than the one

printed on the past year papers.

o Visualization tool is a great step forward for learning.

26

o The new teaching aid (WeNeedAName) gives a lovely visual

walkthrough on how the algorithms covered work. Excellent utility. The

module also uses the above teaching tool to help facilitate electronic

examinations, a welcomed improvement that should have been done a

long time ago. Quite frankly, as a computing society (let alone a

SCHOOL of computing), we should be moving away from pen-and-

paper based examinations. Other modules, such as CS1010 and CS1020,

should utilize this tool to help teach their own respective data structures

and algorithms.

o Visualization tool is extremely well made and useful for self-study.

o The lectures can be a bit slow some times, but overall, it is very easy to

understand what is being taught, partly due to the visualization tool.

 Negative

o Should never get rid of the step-by-step lecture slides even if the

visualization tool is completed. I didn't use the visualization tool because

I felt the tool was distracting and the lecture slides were clearer and

straight to the point.

Overall, there is only a total of 1 negative comment on both mid-term survey and end of

module survey. All other comments on the visualization tool are positive comments.

“WeNeedAName” is the temporary name of this project before VisuAlgo.

27

5 Online Judge Tool

5.1 Requirements

Based on the long-term vision of the project as a whole, I formulated a list of

requirements as follow:

Functional Requirement

1. The online judge tool should be able to generate questions on data structures and

algorithms taught in the following NUS modules:

a. CS1020 Data Structures and Algorithms I (Future Works)

b. CS2010 Data Structures and Algorithms II

c. CS2010 Data Structures and Algorithms Accelerated (Partially supported)

d. CS3230 Design and Analysis of Algorithms (Future Works)

e. CS3233 Competitive Programming (Future Works)

2. The online judge tool must be able to display the questions it generates to the

user clearly, both in terms of question phrasing and visual display of data

structures

3. The online judge tool must be able to handle a predefined set of types of user

input, and ensure that user input is recorded and sent to the server with 100%

accuracy. The types of user input it should handle include but are not limited to:

a. Vertex selection (single and multiple, ordered and unordered)

b. Edge selection (single and multiple, ordered and unordered)

c. Number input

d. Multiple choice options

e. “No answer” option where applicable

4. The online judge tool must always show the user his/her current answer to each

question where applicable

5. The online judge tool should allow the user to navigate between the test

questions

6. For graded online tests, the online judge must constantly display to the user the

time remaining for the test

7. The online judge tool must be able to verify the correctness of answers to the

questions it generates with 100% accuracy

28

8. The online judge tool must be able to display the answers to the questions it

generates to the users

9. The online judge tool must be able to grade the responses for the question sets it

generates and display the resulting score to the user

10. The online judge tool should allow the test administrator to generate a

parameterised question set to be used in a graded online test

11. The online judge tool should allow the test administrator to control student

access to the graded online test and answer key, as well as monitor and record

the results of the test

Non-Functional Requirement

1. Stability: the online judge tool must always be able to run without bugs,

especially during graded tests

2. Compatibility: the online judge tool must be able to function fully in the latest

version of Google Chrome (Version 33). It should be usable on screens with a

resolution of at least 1024x768 px.

3. Usability: the online judge tool should be instantly usable (practically no

learning curve), and easy to use

4. Security: students should not be able to gain access to the test questions before

the test, the test answers before or during the test, allow other students to take

the test for them, give themselves more time, or change recorded test scores

5. Extensibility: the system should be able to accommodate additional secondary

features in the future

5.2 Software Design

The online judge tool itself has two functionalities, which are:

 Training mode: Generate random questions for users to practice on

Defining features:

o Questions generated are randomly generated (mostly by utilizing PHP

random number generator), and the system made no effort to recall the

questions it have generated in the past

29

o User can choose the topics of the questions; questions being generated

will only ask user questions on the selected topics

o Grading result will be released almost instantly, and user can

immediately see the answer key of the generated questions

o Currently, user cannot modify the practice settings, such as the duration

of practice and amount of questions

 Test mode: Generate parameterized questions for grading purposes

Defining features:

o Questions generated are parameterized; the examiner can set the

parameters of the questions, such as the seed, topics, and question

amount, and the system will generate the questions according to the

parameters. More will be added in future works.

o Examiner can modify test settings, such as the duration of test and

amount of questions

o Grading result is released for both the user and the examiner almost

instantly, and examiner can allow/prevent everyone else to access the

answer key

o The test settings and parameters required to generate the question set are

stored inside the database

Similar to the new visualization tool, this tool is implemented with long-term

development, and thus uses software design principles and good coding practices while

still fulfilling the requirements. Below is the block diagram of the online judge tool.

30

31

There are 4 main parts of the online judge tool:

 Question generator and verifier

This collection of classes generate questions of corresponding data structure and

algorithms. It also has the functionalities to verify the answers to questions it

generated. Questions generated this way are pseudo-random, controlled only by

parameters. It is connected to the special data structure classes, which is the

same data structure as what it represents except with their output altered (e.g. if

we search a variable inside the BST in BST.php, it will return the sequence of

vertices checked instead of the standard boolean true/false).

If the question generator requires the use of a graph, it can ask the random graph

generator to generate a random graph for it.

 API

The API is called by the client-side controller using GET requests, mainly to get

generated questions and to send student answers. Inputs sent from the client side

are not immediately stored into the database; they are either processed first by

the database access classes or the question generator classes if the input is

answers to question sets.

 Database access

Classes inside database access provides a simple layer of separation between the

database and the rest of the server-side classes. Only the database access classes

directly connect with the database, and thus the schema is hidden from the rest

of the classes.

 Database

The database stores mainly two types of data, which are user related data and

question generator related data. More on this and the schema itself will be

explained in the next few sections

How the question generator works

 Generating questions:

1. The question generator object gets a request to generate a certain amount

of questions; different topics of questions are obtained by sending the

request to corresponding classes of the question generator

32

2. The question generator generates questions from the pool of question

types implemented in it until it reaches the desired amount

3. The question generator returns an array of QuestionObject class, which

will be converted to JavaScript Object Notation (JSON) format by the

API

 Verifying answers:

1. The question generator will need to re-generate the questions first as

described above

2. The question generator gets a request to verify the answer and the

question object related to the answer

3. The question generator will verify whether the answer provided is indeed

the answer to the question object passed in, and will return true/false

 Obtaining answers to a certain question set:

1. The question generator will need to re-generate the questions first as

described above

2. The question generator gets a request to get the answer of the question

object provided

3. The question generator will return the answer to that question object

API

All of the API calls are HTTP GET requests.

Parameter to differentiate requests: mode.

Modes are implemented as constants on both the client side and the server side.

 MODE_GENERATE_QUESTIONS: Generate questions

o Parameters:

 qAmt: Question amount (integer)

 seed: Seed to generate questions (integer)

 topics: List of allowed topics (list of strings, implemented as

constants)

o Output: Array of JS objects containing the questions

Structure of JS object:

33

 “qTopic": Question topic (string, implemented as constants)

 "qType": Question type (string, implemented as constants)

 "qParams": Question parameters, such as the values asked in the

question and the subtype of the question (JS object, structure

varies)

 “subtype”: Question subtypes. Always present inside

qParams (string, implemented as constants)

 "aType": Answer type, such as whether the answer is MCQ, fill

in the blanks, or click one/several vertices/edges (string,

implemented as constants)

 "aParams" => Contains MCQ choices in case of MCQ-type

questions, otherwise is null (JS object)

 "aAmt": Answer amount; some questions requires users to click

multiple amount of vertices / edges which fulfills a certain

criteria (int)

 "ordered": If there are multiple answers, this indicates whether

the order of which the answers are selected matters (boolean)

 "allowNoAnswer": Whether the question should show the “No

Answer” option (boolean)

 "graphState": The “Graph State” object to be displayed in the UI

 MODE_CHECK_ANSWERS: Check the answers to a set of questions

o Parameters:

 ans: Answers to the question

 qAmt: Question amount (integer)

 seed: Seed to generate questions (integer)

 topics: List of allowed topics (list of strings, implemented as

constants)

o Output: The amount of correct answer

 MODE_GET_ANSWERS: Get the answers to a set of questions

o Parameters:

 ans: Answers to the question

 qAmt: Question amount (integer)

34

 seed: Seed to generate questions (integer)

 topics: List of allowed topics (list of strings, implemented as

constants)

o Output: Array containing the answers

o Postcondition: If the student answers correctly for a certain question, a

string constant “CORRECT” will be sent instead of the correct answer

for that question

 MODE_LOGIN: Login to the system. Currently only used in test mode

o Parameters:

 username: User’s username

 password: User’s password

o Output: 1 (successful) or 0 (unsuccessful)

 MODE_CHECK_TEST_OPEN: Checks whether the user can access the test

mode questions and answer key

o Parameters: None

o Output: Array of 1 or 0 containing the information [test is open, answer

is open]

 MODE_TEST_GENERATE_QUESTIONS: Retrieves the questions for the test

mode

o Parameters:

 username: User’s username

 password: User’s password

 type: Determines whether the question generated is being used to

display the test or the answer key

o Output: Same format as MODE_GENERATE_QUESTIONS

o Precondition: Test questions is accessible by the user

o Postcondition: If the question generated is being used to display the test

questions, the user’s attempt count will be updated

 MODE_TEST_SUBMIT: Submits the test mode answers and get the user’s

grade

o Parameters:

 username: User’s username

35

 password: User’s password

 ans: The user’s answers

o Output: Amount of correct answers

o Precondition: User is currently doing the test

o Postcondition: The answers and other associated data will be recorded in

the database

 MODE_TEST_GET_INFO: Get the test utility data, such as time remaining

o Parameters:

 username: User’s username

 password: User’s password

o Output: [time elapsed (seconds), user’s real name, time limit (seconds)]

o Precondition: User is currently doing the test

 MODE_TEST_GET_ANSWERS: Get the test’s answer key

o Parameters:

 username: User’s username

 password: User’s password

o Output: Array containing the answers

o Precondition: Answer key is accessible by the user

 MODE_TEST_GET_STUDENT_ANSWERS: Get the user’s answer to the test

o Parameters:

 username: User’s username

 password: User’s password

o Output: Array containing the answers

o Precondition: User have done the test

 MODE_ADMIN: Login as admin

o Parameters:

 password: Admin password

o Output: 1 (successful) or 0 (unsuccessful)

 MODE_ADMIN_GET_CONFIG: Get the current test parameters

o Parameters:

 password: Admin password

36

o Output: JS object of the test configurations (see Database Schema

section, test_config table)

 MODE_ADMIN_EDIT_CONFIG: Edit the test parameters

o Parameters:

 password: Admin password

o Output: None

o Postcondition: Test configurations is updated in test_config table

 MODE_ADMIN_RESET_ATTEMPT: Reset the attempt counter of a user

o Parameters:

 password: Admin password

 username: User’s username

o Output: 1 (successful) or 0 (unsuccessful)

 MODE_GET_SCOREBOARD: Gets the scoreboard of the test

o Parameters: None

o Output: Array of JS object containing the scoreboard information

 username: The user’s username

 name: The user’s real name

 grade: The user’s grade

 questionAmount: Total number of questions aksed in the test

 timeTaken: Time taken to complete the test

37

Database Schema

 user: stores information related to user accounts; currently there’s no admin

account, and admin password is hardcoded in the system

o username: the username of the user (Primary Key)

o name: the real name of the user

o password: the password associated with the username; currently not

encrypted

 test: stores information related to test mode results of the users

o username: the username of the user (Primary Key, Foreign Key to ‘user’

table)

o answer: the user’s answer for the test in the form of serialized PHP array

o grade: the user’s grade for the test

o timeTaken: how long does it takes for the user to complete the test in

seconds; calculations are done using server time

o startTime: when does the user starts taking the test; calculations are done

using server time

o attemptCount: how many times have the user attempted the test; can be

reset by the examiner

 test_config: stores parameters to generate the test mode questions and settings

38

o index: the index of the config; doesn’t mean much because there is only

one table entry (Primary Key)

o seed: the seed used to generate the test questions

o topics: the topics of the test questions in the form of serialized PHP array

o questionAmount: total amount of the test questions

o maxAttemptCount: maximum amount of attempt that a user can take for

the test

o timeLimit: time limit of the test in seconds

o testIsOpen: determines whether users can access the test

o answerIsOpen: determines whether users can access the answer key

 graph_template: stores graph templates used in random graph generator

o name: the name of the graph template (Primary Key)

o template: the graph template in the form of “Graph State” object, stored

as serialized PHP array

o directed: indicates whether the graph in the template is a directed graph

o vertexAmount: how many vertices does the graph described by the graph

template has

o connected: indicates whether the graph in the template is a connected

graph

39

5.3 Proof of Concept

Binary Search Tree Question Generator

40

List of question types implemented:

 Click the sequence of vertices from the root when the search for random integer

X is executed on a BST containing N [1..10] integers

 Click one vertex with the minimum or maximum value of a BST containing N

[1..10] integers (More likely to generate “linked-list” BST)

 Click the sequence of vertices that will be executed by the “Successor(X) /

Predecessor(X)” in the BST containing N [1..10] integers

 Click the sequence of vertices in the BST according to the

inorder/preorder/postorder traversal starting from the root

 Given a BST containing N [1..10] integers, decide if it is balanced according to

AVL tree criteria

 Given a binary tree structure containing N [2..20] integers, determine whether it

is a BST

 Given a BST containing N [1..10] integers, determine the height of this BST

 Given a BST containing N [1..10] integers, determine the K [1..N] th smallest

element

 Given a BST containing N [1..10] integers, click all the leaf/root/internal

vertices. Leaf is defined as vertex with no children. Root is defined as vertex

with no parent. Internal vertices are the rest.

 Given an AVL tree containing N [1..10] integers, insert/delete M[1...3] vertices

such that Y (0/1/2) Left/Right/LeftRight/RightLeft rotation occurs (Currently

disabled due to the question generator’s limitations in generating correct answer)

41

Binary Heap Question Generator

List of question types implemented:

 Given a min/max binary heap containing N [1..31] integers, insert a new integer

X [1..99]. This new integer has been inserted at the appropriate new leaf. Click a

42

sequence of shift up operations (vertices that will be swapped with the inserted

vertex) or click a special ‘No swap’ button if there is no swap at all

 Given a min/max binary heap containing N [1..31] integers , we want to extract

the min/max item. The bottom rightmost existing leaf has been moved to the

root and the heap size has been decreased by one. Click a sequence of shift down

operations or click a special ‘No swap’ button if there is no swap at all

 Given a min/max binary heap containing N [16..31] integers , click the

leaf/root/internal vertices. Leaf is defined as vertex with no children. Root is

defined as vertex with no parent. Internal vertices are the rest

 Given a min/max binary heap containing N [16..31] integers, click the left

child/right child/parent of a certain existing vertex

 Given a min/max binary heap containing N [16..31] integers , click all vertices

that are less than/greater than X

 Given a min/max binary heap containing N [20..31] integers , we want to

perform partial heap sort. After K [4/5*N..N-1]-th step, what will remain in the

min/max binary heap?

 Given a starting array that may or may not be a min/max binary heap containing

N [1..31] integers, we want to perform the O(n) build heap. Select the root

vertices of any sub tree that still violate the min/max heap property and shift

down will be performed on those vertices

 Given a min/max binary heap containing N [1..31] integers, determine whether

the heap is a min heap or a max heap

43

Union Find

List of question types implemented:

 Given a UFDS tree of N[1..15] integers, click all vertices that belongs to the

same set as vertex X

44

 Given a UFDS tree of N[1..15] integers, click the sequence of vertices that are

visited by findSet(X)

 Given a UFDS tree of N[1..15] integers, click all vertices X which causes the

UFDS structure to change when findSet(X) is called

45

Random Graph Generator

46

Answer Verifier

47

48

Scoreboard

49

6 Recommendations for Future Works

6.1 Visualization Tool

Improve the Software Design

One of the drawbacks of the current visualization system is that it has to rely on Graph

Library for visualizations, which makes it difficult for non-graph related data structures

and algorithm to be developed. One solution to this is to implement another “Library”,

such as “Table Library” for table-based data structures and algorithms. Some works also

needs to be done to make sure the “Don’t Repeat Yourself” principle is held, such as by

separating the animation controller from GraphWidget.js.

Graph Library itself has some features that need to be implemented. One such features

is the graph drawing capabilities, which is currently have been implemented as

visualization logic but too buggy to be used by students. It has been suggested that this

feature is implemented as an inheritance of GraphWidget.js and thus becomes part of

the Graph Library, because graph-drawing capabilities are not data structures or

algorithms, but utilities to assist the visualization of graph-related data structures and

algorithms.

All of these features were planned during the development, but was put on hold due to

time constraint. In particular, the visualization tool is being used by the CS2010

students during the development period, and so quickly implementing visualizations

used in the class takes higher precedence over system design. Moreover, the focus of the

project is the online judge tool, not the visualization tool.

Add More Visualization

Currently the visualization tool has not implemented all the visualizations it needs to

implement. There are still basic data structures and algorithms which needs to be

implemented, ranging from CS1020 Data Structures and Algorithms 1 such as Stack

and Queue to the more exotic ones from CS3230 Design and Analysis of Algorithms

and CS3233 Competitive Programming such as Binary Indexed Tree and Maximum

50

Flow. Full list of the exotic algorithms and explanations on them can be found in

Competitive Programming 3 book, in which the tool needs to implement every

algorithms presented in the book (Halim and Halim, 2013). These are part of the

functional requirements, and plans are also made to implement these visualizations.

However, time constraint forces our team to implement CS2010 visualizations first.

Furthermore, the system design has to be improved first as described in the previous

section before our team can implement some of these visualizations.

6.2 Online Judge Tool

Improve the Intelligence of the Question Generator

There are several ways in which the intelligence of question generators can be improved.

Two of them are listed below:

 Implement the ability to generate questions of varying difficulties

Currently, the question generator does not recognize the difficulties of the

questions; it simply generates questions randomly. As a result, some questions

can be too trivial, while others can be extremely difficult to solve by humans in

reasonable time. Having the ability to generate questions of varying difficulties

will greatly benefit the examiners, which can then set the difficulty of the test

questions more easily, and perhaps purposely generate corner-case questions.

Students can also benefit by allowing them to train on varying level of

difficulties according to their current level of understanding, gradually

increasing the difficulty as they progress.

 Implement a more efficient answer verifier

One of the problem with answer verifier is that there are questions that are easy

to verify, but difficult to generate an answer. By difficult, I am referring to the

time complexity required to arrive at the answer, since some of them seemingly

requires costly brute force method. A portion of them are also NP-Hard, for

example a question which requires students to draw a graph of certain size V

that satisfies certain set of properties. The verifier algorithm can simply check

whether the students’ graph satisfies the set of properties, but it will have to

generate a graph with the said set of properties to provide correct answer for

51

students, resulting in lots of graphs generated and verified. This is required

especially on questions with “No Answer” option, because on the occasion

where the students cannot arrive at a proper answer, the system is expected to

generate a correct answer for them.

Enhance the Security System of the System

Security aspects have been overlooked during the developments. Compared to NUS

Standard of Procedure in conducting online assessments (as stated by Dr. Halim; the

original document is confidential in nature), the online judge tool is severely lacking.

Some of the major security problems are listed below:

 SQL Injection

Since security aspects are not the focus of the project, some database access

classes might allow SQL injections. This will make it very easy to conduct

hacking attempts, and thus should be fixed as soon as possible

 Lack of Encryption

Passwords and students’ answers are not encrypted in the database, and even

worse the administrator password is hardcoded inside the system. Furthermore,

it is also necessary to encrypt the network communication itself to prevent Man

in the Middle attack

 System Auditing

Students’ activities have to be monitored to identify unusual actions, and that

answers are saved regularly in case of network disruption / other Act of God.

Currently none of these are implemented

 Secure Browser

Actions on the browsers should be restricted, such as prevention of viewing the

source code used. Currently, only minification and obfuscation of JS files are

done to deter outright source code reading, but obviously this can be reverse-

engineered easily even by tools searchable in Google. Further actions, such as

locking browser console as described by Liew (Liew, 2014) might be necessary.

vi

References

 Balfour, S. P. (2013). Assessing Writing in MOOCs: Automated Essay Scoring

and Calibrated Peer Review, pp. 3-4.

 Delaney, J., Johnson, A., Johnson, T., Treslan, D. (2010). Student’s Perception

of Effective Teaching in Higher Education, pp. 33.

 Fleming, N. D. (2006). Teaching and learning styles: VARK strategies. ND

Fleming.

 Galles, D. (2011). Data Structure Visualizations. Retrieved April 6, 2014, from

http://www.cs.usfca.edu/~galles/visualization/

 Halim, S. and Halim, F. (2013). Competitive Programming 3 The New Lower

Bound of Programming Contests. Lulu, Singapore.

 Halim, S., Koh, Z.C., Loh, B.H.V., Halim, F. (2012). Learning Algorithms with

Unified and Interactive Web-Based Visualization, pp. 1-3.

 Jordan, K. (2013). MOOC completion rates: The data. Retrieved April 6, 2014,

from http://www.katyjordan.com/MOOCproject.html

 Krathwohl, D. R. (2012). A Revision of Bloom's Taxonomy: An Overview, pp.

4.

 Liew, K. (2014). Disable Javascript Console in Browsers. Queness. Retrieved

April 6, 2014, from http://www.queness.com/post/16151/disable-javascript-

console-in-browsers

 Martin, R. C. (2000). Design principles and design patterns. Object Mentor, pp.

1-34.

 Microsoft (2009). Chapter 2: Key Principles of Software Architecture. Microsoft

Developer Network. Retrieved April 6, 2014, from

http://msdn.microsoft.com/en-us/library/ee658124.aspx

 Nikander, J., Korhonen, A., Seppälä, O., Karavirta, V., Silvasti, P. and Malmi, L.

(2004). Visual algorithm simulation exercise system with automatic assessment:

TRAKLA2. Informatics in Education-An International Journal, Vol.3, No.2, pp.

267 – 288.

http://www.cs.usfca.edu/~galles/visualization/
http://www.katyjordan.com/MOOCproject.html
http://www.queness.com/post/16151/disable-javascript-console-in-browsers
http://www.queness.com/post/16151/disable-javascript-console-in-browsers
http://msdn.microsoft.com/en-us/library/ee658124.aspx

vii

 Schneier, B. (2012). Cheating in Online Classes. Schneier on Security. Retrieved

April 6, 2014, from

https://www.schneier.com/blog/archives/2012/06/cheating_in_onl_1.html

 The Wolfram|Alpha Team (2013). New Wolfram Problem Generator: Practice

and Learn. WolframAlpha Blog. Retrieved April 6, 2014, from

http://blog.wolframalpha.com/2013/10/18/new-wolfram-problem-generator-

practice-and-learn/

 Ullrich, T., & Fellner, D. (2004). AlgoViz-a computer graphics algorithm

visualization toolkit. In World Conference on Educational Multimedia,

Hypermedia and Telecommunications (Vol. 2004, No. 1, pp. 941-948).

https://www.schneier.com/blog/archives/2012/06/cheating_in_onl_1.html
http://blog.wolframalpha.com/2013/10/18/new-wolfram-problem-generator-practice-and-learn/
http://blog.wolframalpha.com/2013/10/18/new-wolfram-problem-generator-practice-and-learn/

