7    VisuAlgo.net / /suffixtree Login Suffixbaum
Erkundungsmodus

>

>
langsam
schnell
go to beginning previous frame pause play next frame go to end

A Suffix Tree is a compressed tree containing all the suffixes of the given text as their keys and positions in the text as their values. Suffix Tree provides a particularly fast implementation for many important string operations. This data structure is very related to Suffix Array data structure.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
Please login if you are a repeated visitor or register for an (optional) free account first.

X Esc
Weiter
PgDn

The suffix i (or the i-th suffix) of a (usually long) text string T is a 'special case' of substring that goes from the i-th character of the string up to the last character of the string.


For example, if T = "STEVEN$", then suffix 0 of T is "STEVEN$" (0-based indexing), suffix 2 of T is "EVEN$", suffix 4 of T is "EN$", etc.


Pro-tip: Since you are not logged-in, you may be a first time visitor who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown] to advance to the next slide, [PageUp] to go back to the previous slide, [Esc] to toggle between this e-Lecture mode and exploration mode.

X Esc
Zurück
PgUp
Weiter
PgDn

The visualization of Suffix Tree of a string T is basically a rooted tree where path label (concatenation of edge label(s)) from root to each leaf describes a suffix of T. Each leaf vertex is a suffix and the integer value written inside the leaf vertex is the suffix number.


An internal vertex will branch to more than one child vertex, therefore there are more than one suffix from the root to the leaves via this internal vertex. The path label of an internal vertex is a common prefix among those suffix(es).


Another pro-tip: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2017). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

X Esc
Zurück
PgUp
Weiter
PgDn

The Suffix Tree above is built from string T = "GATAGACA$" that have these 9 suffixes:

iSuffix
0GATAGACA$
1ATAGACA$
2TAGACA$
3AGACA$
4GACA$
5ACA$
6CA$
7A$
8$

Now verify that the path labels of suffix 7/6/2 are "A$"/"CA$"/"TAGACA$", respectively (there are 6 other suffixes). The internal vertices with path label "A"/"GA" branch out to 4 suffixes {7, 5, 3, 1}/2 suffixes {4, 0}, respectively (we ignore the trivial internal vertex = root vertex that branches out to all 9 suffixes).

X Esc
Zurück
PgUp
Weiter
PgDn

In order to ensure that every suffix of the input string T ends in a leaf vertex, we enforce that string T ends with a special terminating symbol '$' that is not used in the original string T and has ASCII value lower than the lowest allowable character in T (which is character 'A'). This way, edge label '$' always appear at the leftmost edge of an internal vertex of this Suffix Tree visualization.


For the Suffix Tree example above (for T = "GATAGACA$"), if we do not have terminating symbol '$', notice that suffix 7 "A" does NOT end in a leaf vertex and can complicate some operations later.

X Esc
Zurück
PgUp
Weiter
PgDn

As we have ensured that all suffixes end at a leaf vertex, there are at most n leaves/suffixes in a Suffix Tree. All internal vertices (including the root vertex if it is an internal vertex) are always branching thus there can be at most n-1 such vertices, as shown with one of the extreme test case on the right.


The maximum number of vertices in a Suffix Tree is thus = n (leaves) + (n-1) internal vertices = 2n-1 = O(n) vertices. As Suffix Tree is a tree, the maximum number of edges in a Suffix Tree is also (2n-1)-1 = O(n) edges.

X Esc
Zurück
PgUp
Weiter
PgDn

When all the characters in string T is all distinct (e.g. T = "ABCDE$"), we can have the following very short Suffix Tree with exactly n+1 vertices (+1 due to root vertex).

X Esc
Zurück
PgUp
Weiter
PgDn

All available operations on the Suffix Tree in this visualization are listed below:

  1. Build Suffix Tree (instant) — instant-build the Suffix Tree from string T.
  2. Search — Find the vertex in Suffix Tree of a (usually longer) string T that has path label containing the (usually shorter) pattern/search string P.
  3. Longest Repeated Substring (LRS) — Find the deepest internal vertex (as that vertex shares common prefix between two (or more) suffixes of T).
  4. Longest Common Substring (LCS) — Find the deepest internal vertex that contains suffixes from two different original strings.
X Esc
Zurück
PgUp
Weiter
PgDn

In this visualization, we only show the fully constructed Suffix Tree without describing the details of the O(n) Suffix Tree construction algorithm — it is a bit too complicated.


We limit the input to only accept 12 UPPERCASE alphabet and the special terminating symbol '$' characters (ie.g [A-Z$]). If you do not write a terminating symbol '$' at the back of your input string, we will automatically do so. If you place a '$' in the middle of the input string, they will be ignored. And if you enter an empty input string, we will resort to the default "GATAGACA$".


For convenience, we provide a few classic test case input strings usually found in Suffix Tree/Array lectures.

X Esc
Zurück
PgUp
Weiter
PgDn

Assuming that the Suffix Tree of a (usually longer) string T (of length n) has been built, we want to find all occurrences of pattern/search string P (of length m).


To do this, we search for the vertex x in the suffix Tree of T which has path label that represents P. Once we find this vertex x, all the leaves in the subtree rooted at x are the occurrences.


Time complexity: O(m+occ) where occ is the total number of occurrences.


For example, on the Suffix Tree of T = "GATAGACA$" above, let's try finding:

  1. Search("A"), occurrences = {7, 5, 3, 1}
  2. Search("GA"), occurrences = {4, 0}
  3. P = "T", should return occurrences = {2}, but there is a silly bug that we have not killed yet
  4. P = "Z", should return occurrences = {NIL}, but there is a silly bug that we have not killed yet
X Esc
Zurück
PgUp
Weiter
PgDn

Assuming that the Suffix Tree of a (usually longer) string T (of length n) has been built, we can find the Longest Repeated Substring (LRS) in T by simply finding the deepest internal vertex of the Suffix Tree of T.


This is because each internal vertex of the Suffix Tree of T branches out to at least two (or more) suffixes, i.e. the path label (common prefix of these suffixes) are repeated.


The internal vertex with the deepest/longest path label is the required answer, which can be found in O(n) with a simple tree traversal.


Without further ado, try LRS(T) on the Suffix Tree of string T = "GATAGACA$" above.

X Esc
Zurück
PgUp
Weiter
PgDn

This time, we need two input strings T1 and T2 that terminate with symbol '$'/'#', respectively. We then create the generalized Suffix Tree of these two strings T1+T2. Then, we can find the Longest Common Substring (LCS) of those two strings T1 and T2 by simply finding the deepest and valid internal vertex of the generalized Suffix Tree of T1+T2.


This is because each internal vertex of the Suffix Tree of T branches out to at least two (or more) suffixes, i.e. the path label (common prefix of these suffixes) are repeated. Then, we add an additional constraint where an internal vertex is considered valid (to be considered as LCS candidate) only if it represents suffixes from both strings, i.e. not just repeated, but a common substring found in both T1 and T2.


The valid internal vertex with the deepest/longest path label is the required answer, which can be found in O(n) with a simple tree traversal.


Without further ado, try LCS(T1,T2) on the generalized Suffix Tree of string T1 = "GATAGACA$" and T2 = "CATABB#" (notice that the UI will change to generalized Suffix Tree version).

X Esc
Zurück
PgUp
Weiter
PgDn

There are a few other things that we can do with Suffix Tree like "Finding Longest Repeated Substring without overlap", "Finding Longest Common Substring of ≥ 2 strings", etc, but we will keep that for later.


We will continue the discussion of this String-specific data structure with the more versatile to Suffix Array data structure.

X Esc
Zurück
PgUp
Weiter
PgDn
Alle Schritte werden in der Status Anzeige erklärt während sie passieren
X Esc
Zurück
PgUp
Weiter
PgDn

e-Lecture: The content of this slide is hidden and only available for legitimate CS lecturer worldwide. Drop an email to visualgo.info at gmail dot com if you want to activate this CS lecturer-only feature and you are really a CS lecturer (show your University staff profile).

X Esc
Zurück
PgUp
Weiter
PgDn
Kontrolliere die Animation mit Hilfe deiner Tastatur! Die Tasten sind:

Leertaste: start/stop/wiederholen
Pfeiltaste rechts/links: ein Schritt vor oder zurück
-/+: senke/erhöhe die Geschwindigkeit
X Esc
Zurück
PgUp
Weiter
PgDn
Kehre zum 'Exploration Mode' zurück und beginne zu Erforschen
X Esc
Zurück
PgUp

Erstelle Suffixbaum (instant)

Längster wiederholter Substring

========================

Längster gemeinsamer Substring

>

GATAGACA$

BANANA$

MISSISSIPPI$

AAAAAAA$

Gehen

Build Generalized ST and Compute LCS

Über
Mannschaft
Nutzungsbedingungen

Über

VisuAlgo wurde konzeptioniert 2011 von Dr Steven Halim als ein Tool um seinen Studenten zu helfen Datenstrukturen und Algorithmen besser zu verstehen, indem sie die Grundlagen alleine und in ihrem eigenen Tempo lernen können.
VisuAlgo enthält viele fortgeschrittene Algorithmen die auch in Dr Steven Halim's Buch ('Competitive Programming', co-author ist sein Bruder Dr Felix Halim) und mehr. Heute, können die Visualisierungen/Animationen vieler fortgeschrittener Algorithmen nur auf VisoAlgo gefunden werden.
Obwohl die Visualisierungen speziell für die verschiedenen Datenstruktur und Algorithmik Kurse der National University of Singapore (NUS) gemacht sind, freuen wir uns, als Befürworter des Online Lernens, wenn auch andere neugierige Geister unsere Visualisierungen nützlich finden.
VisuAlgo ist nicht designed um gut auf kleinen Touchscreens (z,B, Smartphones) zu funktionieren, da die Darstellung komplexer Algorithmen viele Pixel benötigt und click-and-drag Aktionen zur Interaktion. Die minimale Bildschirmauflösung für ein akzeptables Benutz Erlebnis ist 1024x768 und nur die Startseite ist einigermaßen mobilfähig.
VisuAlgo ist ein laufendes Projekt und weitere komplexe Visualisierungen werden weiterhin entwickelt.
Die aufregendste Entwicklung ist der automatisierte Fragen Generator und Überprüfer (das Online Quiz System), dass Studenten erlaubt deren Wissen über grundlegende Datenstrukturen und Algorithmen zu testen. Die Fragen werden mit der Hilfe einiger Regeln zufällig generiert und die Antworten der Studenten werden automatisch von unserem Bewertungs Server bewertet. Das Online Quiz System, wenn es von mehr Informatik Tutoren übernommen wird, sollte eigentlich grundlegende Datenstrucktur- und Algorithmikfragen in Klausuren an vielen Universitäten ersetzten. Indem man ein wenig (allerdings nicht null) Gewicht darauf legt, dass das Online Quiz bestanden wird, kann ein Informatik Tutor (stark) das Können seiner Studenten was solche grundlegenden Fragen betrifft erhöhen, da die Studenten eine nahezu unendlich Anzahl ein Trainingsfragen beantworten können bevor sie das Online Quiz machen. Der Training Modus enthält aktuell Fragen für 12 Visualisierungsmodule. Die letzten 8 werden bald folgen, sodass es für alle Visualisierungsmodule ein Online Quiz gibt.
Eine weitere aktive Abteilung ist das Internationalisierungs Sub-Projekt von VisuAlgo. Wir wollen eine Datenbank für alle Informatik Begriffe aus alle englischen Texte im VisuAlgo System anlegen. Das ist eine große Aufgabe und benötigt Crowdsourcing. Sobald das System funktionstüchtig ist, werden wir VisuAlgo Besucher dazu einladen. Besonders wenn sie keine englischen Muttersprachler sind. Aktuel, haben wir auch verschiedene Notizen in verschiedenen Sprachen über VisuAlgo:
zh, id, kr, vn, th.

Mannschaft

Projektleiter & Berater (Juli 2011 bis heute)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Software Engineer, Google (Mountain View)

Studentische Hilfskräfte 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Abschlussprojekt/UROP Studenten 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Abschlussprojekt/UROP Studenten 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Studentische Hilfskräfte 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Abschlussprojekt/UROP Studenten 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Abschlussprojekt/UROP Studenten 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

List of translators who have contributed ≥100 translations can be found at statistics page.

Danksagungen
Dieses Projekt wird durch den großzügigen Teaching Enhancement Grant des NUS Centre for Development of Teaching and Learning (CDTL) ermöglicht.

Nutzungsbedingungen

VisuAlgo ist kostenlos für die Informatik-Community dieses Planeten (natürlich auch von Leute nicht von der Erde). Wenn dir VisuAlgo gefällt, ist die einzige Bezahlung um die wir bitten, das du anderen Informatik Studenten und Tutoren von dieser Seite erzählst. =) über Facebook, Twitter, Kurs Internet Seit, Blog Eintrag, Email usw.

Bist du ein Datenstruktur oder Algorithmik Student/Tutor, darfst du diese Webseite für deine Kurse nutzen. Solltest du Screenshots (Videos) von dieser Seite machen, darfst du diese woanders verwenden, solange du die URL dieser Seite (http://visualgo.net) als Referenz angibst. Es ist allerdings NICHT erlaubt VisuAlgo (client-Side) Dateien herunter zu laden und diese auf deiner eigenen Website zu hosten, da das ein  Plagiat wäre. Es ist auch NICHT erlaubt eine Anspaltung dieser Website zu machen und Varianten von VisuAlgo zu erstellen. Eine private Nutzung einer offline Kopie (client-side) von VisuAlgo ist erlaubt.

Beachte allerdings das VisuAlgo's Online Quiz System von Natur aus eine schwere Server-seitige Komponente hat und es gibt keinen einfachen Weg die Server-seitige Scripts und Datenbanken lokal zu speichern. Aktuell kann die allgemeinen Öffentlichkeit nur den 'Trainings Modus' nutzen um an das Online Quiz System zu kommen. Der 'Test-Modus' ist eine kontrollierterte Umgebung in der zufällig generierte Fragen und automatische Überprüfung für eine echte Prüfung in NUS genutzt werden. Andere interessierte Informatik Tutoren sollten Steven kontaktieren, wenn sie auch diesen 'Test-Modus' ausprobieren wollen.

Liste der Publikationen

Diese Arbeit wurde kurz beim CLI Workshop beim ACM ICPC Weltfinale 2012 (Polen, Warschau) und bei der IOI Konferenz bei IOI 2012 (Italien, Sirmione-Montichiari). Du kannst du diesen Link klicken um unser 2012 Paper über dieses System zu lesen (Es hieß 2012 noch nicht VisuAlgo).
Diese Arbeit wurde wurde hauptsächlich von ehemaligen Studenten gemacht. Die letzten Ergebnisse sind hier: Erin, Wang Zi, Rose, Ivan.

Bug Reports oder Anfragen zu neuen Features

VisuAgo ist kein fertiges Projekt. Dr Steven Halim arbeitet aktiv daran VisuAlgo zu verbessern. Wenn du beim benutzten von VisuAlgo in einer Visualisierung/Online Quiz einen Bug findest oder ein neues Feature möchtest, kontaktiere bitte Dr Steven Halim. Sein Kontakt ist die Verkettung seines Namens und at gmail dot com.